Cargando…
Cortical-like dynamics in recurrent circuits optimized for sampling-based probabilistic inference
Sensory cortices display a suite of ubiquitous dynamical features, such as ongoing noise variability, transient overshoots, and oscillations, that have so far escaped a common, principled theoretical account. We developed a unifying model for these phenomena by training a recurrent excitatory–inhibi...
Autores principales: | Echeveste, Rodrigo, Aitchison, Laurence, Hennequin, Guillaume, Lengyel, Máté |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610392/ https://www.ncbi.nlm.nih.gov/pubmed/32778794 http://dx.doi.org/10.1038/s41593-020-0671-1 |
Ejemplares similares
-
The Hamiltonian Brain: Efficient Probabilistic Inference with Excitatory-Inhibitory Neural Circuit Dynamics
por: Aitchison, Laurence, et al.
Publicado: (2016) -
The Redemption of Noise: Inference with Neural Populations
por: Echeveste, Rodrigo, et al.
Publicado: (2018) -
Adaptive erasure of spurious sequences in sensory cortical circuits
por: Bernacchia, Alberto, et al.
Publicado: (2022) -
Probabilistic Inference with Polymerizing Biochemical Circuits
por: Katz, Yarden, et al.
Publicado: (2022) -
Neural Variability and Sampling-Based Probabilistic Representations in the Visual Cortex
por: Orbán, Gergő, et al.
Publicado: (2016)