Cargando…

Photonic Crystal Optical Parametric Oscillator

We report a new class of Optical Parametric Oscillators, based on a 20μm-long semiconductor Photonic Crystal Cavity and operating at Telecom wavelengths. Because the confinement results from Bragg scattering, the optical cavity contains a few modes, approximately equispaced in frequency. Parametric...

Descripción completa

Detalles Bibliográficos
Autores principales: Marty, Gabriel, Combrié, Sylvain, Raineri, Fabrice, De Rossi, Alfredo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610394/
https://www.ncbi.nlm.nih.gov/pubmed/33767738
http://dx.doi.org/10.1038/s41566-020-00737-z
Descripción
Sumario:We report a new class of Optical Parametric Oscillators, based on a 20μm-long semiconductor Photonic Crystal Cavity and operating at Telecom wavelengths. Because the confinement results from Bragg scattering, the optical cavity contains a few modes, approximately equispaced in frequency. Parametric oscillation is reached when these high Q modes are thermally tuned into a triply resonant configuration, whereas any other parametric interaction is strongly suppressed. The lowest pump power threshold is estimated to 50 - 70μW. This source behaves as an ideal degenerate Optical Parametric Oscillator addressing the needs in the field of quantum optical circuits, paving the way to the dense integration of highly efficient nonlinear sources of squeezed light or entangled photons pairs.