Cargando…
A multi-channel uncertainty-aware multi-resolution network for MR to CT synthesis
Synthesising computed tomography (CT) images from magnetic resonance images (MRI) plays an important role in the field of medical image analysis, both for quantification and diagnostic purposes. Convolutional neural networks (CNNs) have achieved state-of-the-art results in image-to-image translation...
Autores principales: | Kläser, Kerstin, Borges, Pedro, Shaw, Richard, Ranzini, Marta, Modat, Marc, Atkinson, David, Thielemans, Kris, Hutton, Brian, Goh, Vicky, Cook, Gary, Cardoso, M Jorge, Ourselin, Sébastien |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610395/ https://www.ncbi.nlm.nih.gov/pubmed/33763236 http://dx.doi.org/10.3390/app11041667 |
Ejemplares similares
-
Multi-contrast attenuation map synthesis for PET/MR scanners: assessment on FDG and Florbetapir PET tracers
por: Burgos, Ninon, et al.
Publicado: (2015) -
Imitation learning for improved 3D PET/MR attenuation correction()
por: Kläser, Kerstin, et al.
Publicado: (2021) -
CT synthesis in the head & neck region for PET/MR attenuation correction: an iterative multi-atlas approach
por: Burgos, Ninon, et al.
Publicado: (2015) -
Rapid workflow of mMR PET list-mode data processing using CUDA
por: Markiewicz, Pawel, et al.
Publicado: (2015) -
Attenuation correction synthesis for hybrid PET-MR scanners: validation for brain study applications
por: Burgos, Ninon, et al.
Publicado: (2014)