Cargando…

Metabolic cooperation and spatiotemporal niche partitioning in a kefir microbial community

Microbial communities often undergo intricate compositional changes yet also maintain stable coexistence of diverse species. The mechanisms underlying long-term coexistence remain unclear as system-wide studies have been largely limited to engineered communities, ex situ adapted cultures, or synthet...

Descripción completa

Detalles Bibliográficos
Autores principales: Blasche, Sonja, Kim, Yongkyu, Mars, Ruben, Machado, Daniel, Maansson, Maria, Kafkia, Eleni, Milanese, Alessio, Zeller, Georg, Teusink, Bas, Nielsen, Jens, Benes, Vladimir, Neves, Rute, Sauer, Uwe, Patil, Kiran Raosaheb
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610452/
https://www.ncbi.nlm.nih.gov/pubmed/33398099
http://dx.doi.org/10.1038/s41564-020-00816-5
_version_ 1783605193397501952
author Blasche, Sonja
Kim, Yongkyu
Mars, Ruben
Machado, Daniel
Maansson, Maria
Kafkia, Eleni
Milanese, Alessio
Zeller, Georg
Teusink, Bas
Nielsen, Jens
Benes, Vladimir
Neves, Rute
Sauer, Uwe
Patil, Kiran Raosaheb
author_facet Blasche, Sonja
Kim, Yongkyu
Mars, Ruben
Machado, Daniel
Maansson, Maria
Kafkia, Eleni
Milanese, Alessio
Zeller, Georg
Teusink, Bas
Nielsen, Jens
Benes, Vladimir
Neves, Rute
Sauer, Uwe
Patil, Kiran Raosaheb
author_sort Blasche, Sonja
collection PubMed
description Microbial communities often undergo intricate compositional changes yet also maintain stable coexistence of diverse species. The mechanisms underlying long-term coexistence remain unclear as system-wide studies have been largely limited to engineered communities, ex situ adapted cultures, or synthetic assemblies. Here we show how kefir, a natural milk-fermenting community of prokaryotes (predominantly lactic and acetic acid bacteria) and yeasts (family Saccharomycetaceae), realizes stable coexistence through spatiotemporal orchestration of species and metabolite dynamics. During milk fermentation, kefir grains (a polysaccharide matrix synthesized by kefir microbes) grow in mass but remain unchanged in composition. In contrast, the milk is colonized in a sequential manner in which early members open the niche for the followers by making available metabolites like amino acids and lactate. Through metabolomics, transcriptomics and large-scale mapping of inter-species interactions, we show how microbes poorly suited for milk survive in — and even dominate — the community, through metabolic cooperation and uneven partitioning between grain and milk. Overall, our findings reveal how inter-species interactions partitioned in space and time lead to stable coexistence.
format Online
Article
Text
id pubmed-7610452
institution National Center for Biotechnology Information
language English
publishDate 2021
record_format MEDLINE/PubMed
spelling pubmed-76104522021-07-04 Metabolic cooperation and spatiotemporal niche partitioning in a kefir microbial community Blasche, Sonja Kim, Yongkyu Mars, Ruben Machado, Daniel Maansson, Maria Kafkia, Eleni Milanese, Alessio Zeller, Georg Teusink, Bas Nielsen, Jens Benes, Vladimir Neves, Rute Sauer, Uwe Patil, Kiran Raosaheb Nat Microbiol Article Microbial communities often undergo intricate compositional changes yet also maintain stable coexistence of diverse species. The mechanisms underlying long-term coexistence remain unclear as system-wide studies have been largely limited to engineered communities, ex situ adapted cultures, or synthetic assemblies. Here we show how kefir, a natural milk-fermenting community of prokaryotes (predominantly lactic and acetic acid bacteria) and yeasts (family Saccharomycetaceae), realizes stable coexistence through spatiotemporal orchestration of species and metabolite dynamics. During milk fermentation, kefir grains (a polysaccharide matrix synthesized by kefir microbes) grow in mass but remain unchanged in composition. In contrast, the milk is colonized in a sequential manner in which early members open the niche for the followers by making available metabolites like amino acids and lactate. Through metabolomics, transcriptomics and large-scale mapping of inter-species interactions, we show how microbes poorly suited for milk survive in — and even dominate — the community, through metabolic cooperation and uneven partitioning between grain and milk. Overall, our findings reveal how inter-species interactions partitioned in space and time lead to stable coexistence. 2021-02-01 2021-01-04 /pmc/articles/PMC7610452/ /pubmed/33398099 http://dx.doi.org/10.1038/s41564-020-00816-5 Text en http://www.nature.com/authors/editorial_policies/license.html#termsUsers may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Blasche, Sonja
Kim, Yongkyu
Mars, Ruben
Machado, Daniel
Maansson, Maria
Kafkia, Eleni
Milanese, Alessio
Zeller, Georg
Teusink, Bas
Nielsen, Jens
Benes, Vladimir
Neves, Rute
Sauer, Uwe
Patil, Kiran Raosaheb
Metabolic cooperation and spatiotemporal niche partitioning in a kefir microbial community
title Metabolic cooperation and spatiotemporal niche partitioning in a kefir microbial community
title_full Metabolic cooperation and spatiotemporal niche partitioning in a kefir microbial community
title_fullStr Metabolic cooperation and spatiotemporal niche partitioning in a kefir microbial community
title_full_unstemmed Metabolic cooperation and spatiotemporal niche partitioning in a kefir microbial community
title_short Metabolic cooperation and spatiotemporal niche partitioning in a kefir microbial community
title_sort metabolic cooperation and spatiotemporal niche partitioning in a kefir microbial community
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610452/
https://www.ncbi.nlm.nih.gov/pubmed/33398099
http://dx.doi.org/10.1038/s41564-020-00816-5
work_keys_str_mv AT blaschesonja metaboliccooperationandspatiotemporalnichepartitioninginakefirmicrobialcommunity
AT kimyongkyu metaboliccooperationandspatiotemporalnichepartitioninginakefirmicrobialcommunity
AT marsruben metaboliccooperationandspatiotemporalnichepartitioninginakefirmicrobialcommunity
AT machadodaniel metaboliccooperationandspatiotemporalnichepartitioninginakefirmicrobialcommunity
AT maanssonmaria metaboliccooperationandspatiotemporalnichepartitioninginakefirmicrobialcommunity
AT kafkiaeleni metaboliccooperationandspatiotemporalnichepartitioninginakefirmicrobialcommunity
AT milanesealessio metaboliccooperationandspatiotemporalnichepartitioninginakefirmicrobialcommunity
AT zellergeorg metaboliccooperationandspatiotemporalnichepartitioninginakefirmicrobialcommunity
AT teusinkbas metaboliccooperationandspatiotemporalnichepartitioninginakefirmicrobialcommunity
AT nielsenjens metaboliccooperationandspatiotemporalnichepartitioninginakefirmicrobialcommunity
AT benesvladimir metaboliccooperationandspatiotemporalnichepartitioninginakefirmicrobialcommunity
AT nevesrute metaboliccooperationandspatiotemporalnichepartitioninginakefirmicrobialcommunity
AT saueruwe metaboliccooperationandspatiotemporalnichepartitioninginakefirmicrobialcommunity
AT patilkiranraosaheb metaboliccooperationandspatiotemporalnichepartitioninginakefirmicrobialcommunity