Cargando…

DeepC: predicting 3D genome folding using megabase-scale transfer learning

Predicting the impact of non-coding genetic variation requires interpreting it in the context of 3D genome architecture. We have developed deepC, a transfer learning based deep neural network that accurately predicts genome folding from megabase-scale DNA sequence. DeepC predicts domain boundaries a...

Descripción completa

Detalles Bibliográficos
Autores principales: Schwessinger, Ron, Gosden, Matthew, Downes, Damien, Brown, Richard C, Oudelaar, A. Marieke, Telenius, Jelena, Teh, Yee Whye, Lunter, Gerton, Hughes, Jim R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610627/
https://www.ncbi.nlm.nih.gov/pubmed/33046896
http://dx.doi.org/10.1038/s41592-020-0960-3
Descripción
Sumario:Predicting the impact of non-coding genetic variation requires interpreting it in the context of 3D genome architecture. We have developed deepC, a transfer learning based deep neural network that accurately predicts genome folding from megabase-scale DNA sequence. DeepC predicts domain boundaries at high-resolution, learns the sequence determinants of genome folding and predicts the impact of both large-scale structural and single base pair variations.