Cargando…
Nearest neighbors reveal fast and slow components of motor learning
Changes in behavior, due to environmental influences, development, and learning(1–5), are commonly quantified based on a few hand-picked, domain-specific, features(2–4,6,7) (e.g. the average pitch of acoustic vocalizations(3)) and assuming discrete classes of behaviors (e.g. distinct vocal syllables...
Autores principales: | Kollmorgen, Sepp, Hahnloser, Richard, Mante, Valerio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610670/ https://www.ncbi.nlm.nih.gov/pubmed/31915383 http://dx.doi.org/10.1038/s41586-019-1892-x |
Ejemplares similares
-
Lectures on the nearest neighbor method
por: Biau, Gérard, et al.
Publicado: (2015) -
Fast GPU Nearest Neighbors search algorithms for the CMS experiment at LHC
por: Degano, Alessandro
Publicado: (2018) -
Dimensionality reduction with unsupervised nearest neighbors
por: Kramer, Oliver
Publicado: (2013) -
Dynamic Alignment Models for Neural Coding
por: Kollmorgen, Sepp, et al.
Publicado: (2014) -
Kinetic Models for Topological Nearest-Neighbor Interactions
por: Blanchet, Adrien, et al.
Publicado: (2017)