Cargando…
Accurate brain age prediction with lightweight deep neural networks
Deep learning has huge potential for accurate disease prediction with neuroimaging data, but the prediction performance is often limited by training-dataset size and computing memory requirements. To address this, we propose a deep convolutional neural network model, Simple Fully Convolutional Netwo...
Autores principales: | Peng, Han, Gong, Weikang, Beckmann, Christian F., Vedaldi, Andrea, Smith, Stephen M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610710/ https://www.ncbi.nlm.nih.gov/pubmed/33197716 http://dx.doi.org/10.1016/j.media.2020.101871 |
Ejemplares similares
-
Optimising a Simple Fully Convolutional Network for Accurate Brain Age Prediction in the PAC 2019 Challenge
por: Gong, Weikang, et al.
Publicado: (2021) -
Fast and Accurate Object Detection in Remote Sensing Images Based on Lightweight Deep Neural Network
por: Lang, Lei, et al.
Publicado: (2021) -
A lightweight deep neural network with higher accuracy
por: Zhao, Liquan, et al.
Publicado: (2022) -
Phenotype discovery from population brain imaging
por: Gong, Weikang, et al.
Publicado: (2021) -
Malaria Diagnosis Using a Lightweight Deep Convolutional Neural Network
por: Magotra, Varun, et al.
Publicado: (2022)