Cargando…
Attention Gated Networks: Learning to Leverage Salient Regions in Medical Images
We propose a novel attention gate (AG) model for medical image analysis that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a spec...
Autores principales: | Schlemper, Jo, Oktay, Ozan, Schaap, Michiel, Heinrich, Mattias, Kainz, Bernhard, Glocker, Ben, Rueckert, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610718/ https://www.ncbi.nlm.nih.gov/pubmed/30802813 http://dx.doi.org/10.1016/j.media.2019.01.012 |
Ejemplares similares
-
Salient region detection through salient and non-salient dictionaries
por: Fareed, Mian Muhammad Sadiq, et al.
Publicado: (2019) -
Large-scale Quality Control of Cardiac Imaging in Population Studies: Application to UK Biobank
por: Tarroni, Giacomo, et al.
Publicado: (2020) -
NRA-Net—Neg-Region Attention Network for Salient Object Detection with Gaze Tracking
por: Kim, Hoijun, et al.
Publicado: (2021) -
Reward learning and statistical learning independently influence attentional priority of salient distractors in visual search
por: Le Pelley, Mike E., et al.
Publicado: (2022) -
Scrub typhus, a salient threat: Needs attention
por: Zaman, Kamran
Publicado: (2023)