Cargando…
Dynamic adult tracheal plasticity drives stem cell adaptation to changes in intestinal homeostasis in Drosophila
Coordination of stem cell function by local and niche-derived signals is essential to preserve adult tissue homeostasis and organismal health. The vasculature is a prominent component of multiple stem cell niches. However, its role in adult intestinal homeostasis remains largely understudied. Here,...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610788/ https://www.ncbi.nlm.nih.gov/pubmed/33972729 http://dx.doi.org/10.1038/s41556-021-00676-z |
Sumario: | Coordination of stem cell function by local and niche-derived signals is essential to preserve adult tissue homeostasis and organismal health. The vasculature is a prominent component of multiple stem cell niches. However, its role in adult intestinal homeostasis remains largely understudied. Here, we uncover a previously unrecognised crosstalk between adult intestinal stem cells (ISCs) in Drosophila and the vasculature-like tracheal system, which is essential for intestinal regeneration. Following damage to the intestinal epithelium, gut-derived reactive oxygen species (ROS) activate tracheal HIF-1α and bidirectional FGF/FGFR signalling, leading to reversible remodelling of gut-associated terminal tracheal cells and ISC proliferation following damage. Unexpectedly, ROS-induced adult tracheal plasticity involves downregulation of the tracheal specification factor trachealess (trh) and upregulation of IGF2 mRNA-binding protein (IGF2BP2/Imp). Our results reveal an intestine/vasculature inter-organ communication programme, which is essential to adapt stem cells response to the proliferative demands of the intestinal epithelium. |
---|