Cargando…

Dynamic adult tracheal plasticity drives stem cell adaptation to changes in intestinal homeostasis in Drosophila

Coordination of stem cell function by local and niche-derived signals is essential to preserve adult tissue homeostasis and organismal health. The vasculature is a prominent component of multiple stem cell niches. However, its role in adult intestinal homeostasis remains largely understudied. Here,...

Descripción completa

Detalles Bibliográficos
Autores principales: Perochon, Jessica, Yu, Yachuan, Aughey, Gabriel N., Medina, André B., Southall, Tony D., Cordero, Julia B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610788/
https://www.ncbi.nlm.nih.gov/pubmed/33972729
http://dx.doi.org/10.1038/s41556-021-00676-z
Descripción
Sumario:Coordination of stem cell function by local and niche-derived signals is essential to preserve adult tissue homeostasis and organismal health. The vasculature is a prominent component of multiple stem cell niches. However, its role in adult intestinal homeostasis remains largely understudied. Here, we uncover a previously unrecognised crosstalk between adult intestinal stem cells (ISCs) in Drosophila and the vasculature-like tracheal system, which is essential for intestinal regeneration. Following damage to the intestinal epithelium, gut-derived reactive oxygen species (ROS) activate tracheal HIF-1α and bidirectional FGF/FGFR signalling, leading to reversible remodelling of gut-associated terminal tracheal cells and ISC proliferation following damage. Unexpectedly, ROS-induced adult tracheal plasticity involves downregulation of the tracheal specification factor trachealess (trh) and upregulation of IGF2 mRNA-binding protein (IGF2BP2/Imp). Our results reveal an intestine/vasculature inter-organ communication programme, which is essential to adapt stem cells response to the proliferative demands of the intestinal epithelium.