Cargando…
The Financial Effect of the Electricity Price Forecasts’ Inaccuracy on a Hydro-Based Generation Company
Electricity price forecasting has a paramount effect on generation companies (GenCos) due to the scheduling of the electricity generation scheme according to electricity price forecasts. Inaccurate electricity price forecasts could cause important loss of profits to the suppliers. In this paper, the...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610985/ https://www.ncbi.nlm.nih.gov/pubmed/34136089 http://dx.doi.org/10.3390/en11082093 |
_version_ | 1783605248454033408 |
---|---|
author | Ugurlu, Umut Tas, Oktay Kaya, Aycan Oksuz, Ilkay |
author_facet | Ugurlu, Umut Tas, Oktay Kaya, Aycan Oksuz, Ilkay |
author_sort | Ugurlu, Umut |
collection | PubMed |
description | Electricity price forecasting has a paramount effect on generation companies (GenCos) due to the scheduling of the electricity generation scheme according to electricity price forecasts. Inaccurate electricity price forecasts could cause important loss of profits to the suppliers. In this paper, the financial effect of inaccurate electricity price forecasts on a hydro-based GenCo is examined. Electricity price forecasts of five individual and four hybrid forecast models and the ex-post actual prices are used to schedule the hydro-based GenCo using Mixed Integer Linear Programming (MILP). The financial effect measures of profit loss, Economic Loss Index (ELI) and Price Forecast Disadvantage Index (PFDI), as well as Mean Absolute Error (MAE) of the models are used for comparison of the data from 24 weeks of the year. According to the results, a hybrid model, 50% Artificial Neural Network (ANN)–50% Long Short Term Memory (LSTM), has the best performance in terms of financial effect. Furthermore, the forecast performance evaluation methods, such as Mean Absolute Error (MAE), are not necessarily coherent with inaccurate electricity price forecasts’ financial effect measures. |
format | Online Article Text |
id | pubmed-7610985 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
record_format | MEDLINE/PubMed |
spelling | pubmed-76109852021-06-15 The Financial Effect of the Electricity Price Forecasts’ Inaccuracy on a Hydro-Based Generation Company Ugurlu, Umut Tas, Oktay Kaya, Aycan Oksuz, Ilkay Energies (Basel) Article Electricity price forecasting has a paramount effect on generation companies (GenCos) due to the scheduling of the electricity generation scheme according to electricity price forecasts. Inaccurate electricity price forecasts could cause important loss of profits to the suppliers. In this paper, the financial effect of inaccurate electricity price forecasts on a hydro-based GenCo is examined. Electricity price forecasts of five individual and four hybrid forecast models and the ex-post actual prices are used to schedule the hydro-based GenCo using Mixed Integer Linear Programming (MILP). The financial effect measures of profit loss, Economic Loss Index (ELI) and Price Forecast Disadvantage Index (PFDI), as well as Mean Absolute Error (MAE) of the models are used for comparison of the data from 24 weeks of the year. According to the results, a hybrid model, 50% Artificial Neural Network (ANN)–50% Long Short Term Memory (LSTM), has the best performance in terms of financial effect. Furthermore, the forecast performance evaluation methods, such as Mean Absolute Error (MAE), are not necessarily coherent with inaccurate electricity price forecasts’ financial effect measures. 2018-08-11 /pmc/articles/PMC7610985/ /pubmed/34136089 http://dx.doi.org/10.3390/en11082093 Text en https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ugurlu, Umut Tas, Oktay Kaya, Aycan Oksuz, Ilkay The Financial Effect of the Electricity Price Forecasts’ Inaccuracy on a Hydro-Based Generation Company |
title | The Financial Effect of the Electricity Price Forecasts’ Inaccuracy on a Hydro-Based Generation Company |
title_full | The Financial Effect of the Electricity Price Forecasts’ Inaccuracy on a Hydro-Based Generation Company |
title_fullStr | The Financial Effect of the Electricity Price Forecasts’ Inaccuracy on a Hydro-Based Generation Company |
title_full_unstemmed | The Financial Effect of the Electricity Price Forecasts’ Inaccuracy on a Hydro-Based Generation Company |
title_short | The Financial Effect of the Electricity Price Forecasts’ Inaccuracy on a Hydro-Based Generation Company |
title_sort | financial effect of the electricity price forecasts’ inaccuracy on a hydro-based generation company |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610985/ https://www.ncbi.nlm.nih.gov/pubmed/34136089 http://dx.doi.org/10.3390/en11082093 |
work_keys_str_mv | AT ugurluumut thefinancialeffectoftheelectricitypriceforecastsinaccuracyonahydrobasedgenerationcompany AT tasoktay thefinancialeffectoftheelectricitypriceforecastsinaccuracyonahydrobasedgenerationcompany AT kayaaycan thefinancialeffectoftheelectricitypriceforecastsinaccuracyonahydrobasedgenerationcompany AT oksuzilkay thefinancialeffectoftheelectricitypriceforecastsinaccuracyonahydrobasedgenerationcompany AT ugurluumut financialeffectoftheelectricitypriceforecastsinaccuracyonahydrobasedgenerationcompany AT tasoktay financialeffectoftheelectricitypriceforecastsinaccuracyonahydrobasedgenerationcompany AT kayaaycan financialeffectoftheelectricitypriceforecastsinaccuracyonahydrobasedgenerationcompany AT oksuzilkay financialeffectoftheelectricitypriceforecastsinaccuracyonahydrobasedgenerationcompany |