Cargando…

Reverse-Engineering the Cortical Architecture for Controlled Semantic Cognition

We employ a ‘reverse-engineering’ approach to illuminate the neurocomputational building blocks that combine to support controlled semantic cognition: the storage and context-appropriate use of conceptual knowledge. By systematically varying the structure of a computational model and assessing the f...

Descripción completa

Detalles Bibliográficos
Autores principales: Jackson, Rebecca L., Rogers, Timothy T., Lambon Ralph, Matthew A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7611056/
https://www.ncbi.nlm.nih.gov/pubmed/33462472
http://dx.doi.org/10.1038/s41562-020-01034-z
Descripción
Sumario:We employ a ‘reverse-engineering’ approach to illuminate the neurocomputational building blocks that combine to support controlled semantic cognition: the storage and context-appropriate use of conceptual knowledge. By systematically varying the structure of a computational model and assessing the functional consequences, we identified the architectural properties that best promote some core functions of the semantic system. Semantic cognition presents a challenging test case as the brain must achieve two seemingly contradictory functions: abstracting context-invariant conceptual representations across time and modalities, whilst producing specific context-sensitive behaviours appropriate for the immediate task. These functions were best achieved in models possessing a single, deep multimodal hub with sparse connections from modality-specific regions, and control systems acting on peripheral rather than deep network layers. The reverse-engineered model provides a unifying account of core findings in the cognitive neuroscience of controlled semantic cognition, including evidence from anatomy, neuropsychology, and functional brain imaging.