Cargando…
Structure of the shutdown state of myosin-2
Myosin-2 is essential for processes as diverse as cell division and muscle contraction. Dephosphorylation of its regulatory light chain (RLC) promotes an inactive, ‘shutdown’ state with the filament-forming tail folded onto the two heads(1), preventing filament formation and inactivating the motors(...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7611489/ https://www.ncbi.nlm.nih.gov/pubmed/33268888 http://dx.doi.org/10.1038/s41586-020-2990-5 |
Sumario: | Myosin-2 is essential for processes as diverse as cell division and muscle contraction. Dephosphorylation of its regulatory light chain (RLC) promotes an inactive, ‘shutdown’ state with the filament-forming tail folded onto the two heads(1), preventing filament formation and inactivating the motors(2). The mechanism by which this happens is obscure. Here we report a cryo-electron microscopy structure of shutdown smooth muscle myosin, with a resolution of 6 Å in the head region. A pseudo-atomic model, obtained by flexible fitting of crystal structures into the density and molecular dynamics simulations, describes interaction interfaces at the atomic level. The N-terminal extension of one RLC interacts with the tail and the other with the partner head, revealing how the RLCs stabilise the shutdown state in different ways and how their phosphorylation would allow myosin activation. Additional interactions between the three segments of the coiled coil, the motor domains and LCs stabilise the shutdown molecule. The structure of the lever in each head is competent to generate force upon activation. This shutdown structure is relevant to all myosin-2 isoforms and provides a framework for understanding their disease-causing mutations. |
---|