Cargando…
LiftPose3D, a deep learning-based approach for transforming 2D to 3D pose in laboratory animals
Markerless 3D pose estimation has become an indispensable tool for kinematic studies of laboratory animals. Most current methods recover 3D pose by multi-view triangulation of deep network-based 2D pose estimates. However, triangulation requires multiple, synchronized cameras and elaborate calibrati...
Autores principales: | Gosztolai, Adam, Günel, Semih, Ríos, Victor Lobato, Abrate, Marco Pietro, Morales, Daniel, Rhodin, Helge, Fua, Pascal, Ramdya, Pavan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7611544/ https://www.ncbi.nlm.nih.gov/pubmed/34354294 http://dx.doi.org/10.1038/s41592-021-01226-z |
Ejemplares similares
-
DeepFly3D, a deep learning-based approach for 3D limb and appendage tracking in tethered, adult Drosophila
por: Günel, Semih, et al.
Publicado: (2019) -
Standardized 3D test object for multi-camera calibration during animal pose capture
por: Hu, Hao, et al.
Publicado: (2023) -
Pose ResNet: 3D Human Pose Estimation Based on Self-Supervision
por: Bao, Wenxia, et al.
Publicado: (2023) -
Center point to pose: Multiple views 3D human pose estimation for multi-person
por: Liu, Huan, et al.
Publicado: (2022) -
Pixels2Pose: Super-resolution time-of-flight imaging for 3D pose estimation
por: Ruget, Alice, et al.
Publicado: (2022)