Cargando…
A database and deep learning toolbox for noise-optimized, generalized spike inference from calcium imaging
Inference of action potentials (‘spikes’) from neuronal calcium signals is complicated by the scarcity of simultaneous measurements of action potentials and calcium signals (‘ground truth’). We compiled a large, diverse ground-truth database from publicly available and newly performed recordings in...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7611618/ https://www.ncbi.nlm.nih.gov/pubmed/34341584 http://dx.doi.org/10.1038/s41593-021-00895-5 |
_version_ | 1783605289805676544 |
---|---|
author | Rupprecht, Peter Carta, Stefano Hoffmann, Adrian Echizen, Mayumi Blot, Antonin Kwan, Alex C. Dan, Yang Hofer, Sonja B. Kitamura, Kazuo Helmchen, Fritjof Friedrich, Rainer W. |
author_facet | Rupprecht, Peter Carta, Stefano Hoffmann, Adrian Echizen, Mayumi Blot, Antonin Kwan, Alex C. Dan, Yang Hofer, Sonja B. Kitamura, Kazuo Helmchen, Fritjof Friedrich, Rainer W. |
author_sort | Rupprecht, Peter |
collection | PubMed |
description | Inference of action potentials (‘spikes’) from neuronal calcium signals is complicated by the scarcity of simultaneous measurements of action potentials and calcium signals (‘ground truth’). We compiled a large, diverse ground-truth database from publicly available and newly performed recordings in zebrafish and mice covering a broad range of calcium indicators, cell types, and signal-to-noise ratios, comprising a total of >35 recording hours from 298 neurons. We developed an algorithm for spike inference (CASCADE) that is based on supervised deep networks, takes advantage of the ground-truth database, infers absolute spike rates, and outperforms existing model-based algorithms. To optimize performance for unseen imaging data, CASCADE retrains itself by resampling ground-truth data to match the respective sampling rate and noise level; therefore, no parameters need to be adjusted by the user. In addition, we developed systematic performance assessments for unseen data, openly release a resource toolbox, and provide a user-friendly cloud-based implementation. |
format | Online Article Text |
id | pubmed-7611618 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
record_format | MEDLINE/PubMed |
spelling | pubmed-76116182022-02-02 A database and deep learning toolbox for noise-optimized, generalized spike inference from calcium imaging Rupprecht, Peter Carta, Stefano Hoffmann, Adrian Echizen, Mayumi Blot, Antonin Kwan, Alex C. Dan, Yang Hofer, Sonja B. Kitamura, Kazuo Helmchen, Fritjof Friedrich, Rainer W. Nat Neurosci Article Inference of action potentials (‘spikes’) from neuronal calcium signals is complicated by the scarcity of simultaneous measurements of action potentials and calcium signals (‘ground truth’). We compiled a large, diverse ground-truth database from publicly available and newly performed recordings in zebrafish and mice covering a broad range of calcium indicators, cell types, and signal-to-noise ratios, comprising a total of >35 recording hours from 298 neurons. We developed an algorithm for spike inference (CASCADE) that is based on supervised deep networks, takes advantage of the ground-truth database, infers absolute spike rates, and outperforms existing model-based algorithms. To optimize performance for unseen imaging data, CASCADE retrains itself by resampling ground-truth data to match the respective sampling rate and noise level; therefore, no parameters need to be adjusted by the user. In addition, we developed systematic performance assessments for unseen data, openly release a resource toolbox, and provide a user-friendly cloud-based implementation. 2021-09-01 2021-08-02 /pmc/articles/PMC7611618/ /pubmed/34341584 http://dx.doi.org/10.1038/s41593-021-00895-5 Text en https://www.springernature.com/gp/open-research/policies/accepted-manuscript-termsUsers may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms |
spellingShingle | Article Rupprecht, Peter Carta, Stefano Hoffmann, Adrian Echizen, Mayumi Blot, Antonin Kwan, Alex C. Dan, Yang Hofer, Sonja B. Kitamura, Kazuo Helmchen, Fritjof Friedrich, Rainer W. A database and deep learning toolbox for noise-optimized, generalized spike inference from calcium imaging |
title | A database and deep learning toolbox for noise-optimized, generalized spike inference from calcium imaging |
title_full | A database and deep learning toolbox for noise-optimized, generalized spike inference from calcium imaging |
title_fullStr | A database and deep learning toolbox for noise-optimized, generalized spike inference from calcium imaging |
title_full_unstemmed | A database and deep learning toolbox for noise-optimized, generalized spike inference from calcium imaging |
title_short | A database and deep learning toolbox for noise-optimized, generalized spike inference from calcium imaging |
title_sort | database and deep learning toolbox for noise-optimized, generalized spike inference from calcium imaging |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7611618/ https://www.ncbi.nlm.nih.gov/pubmed/34341584 http://dx.doi.org/10.1038/s41593-021-00895-5 |
work_keys_str_mv | AT rupprechtpeter adatabaseanddeeplearningtoolboxfornoiseoptimizedgeneralizedspikeinferencefromcalciumimaging AT cartastefano adatabaseanddeeplearningtoolboxfornoiseoptimizedgeneralizedspikeinferencefromcalciumimaging AT hoffmannadrian adatabaseanddeeplearningtoolboxfornoiseoptimizedgeneralizedspikeinferencefromcalciumimaging AT echizenmayumi adatabaseanddeeplearningtoolboxfornoiseoptimizedgeneralizedspikeinferencefromcalciumimaging AT blotantonin adatabaseanddeeplearningtoolboxfornoiseoptimizedgeneralizedspikeinferencefromcalciumimaging AT kwanalexc adatabaseanddeeplearningtoolboxfornoiseoptimizedgeneralizedspikeinferencefromcalciumimaging AT danyang adatabaseanddeeplearningtoolboxfornoiseoptimizedgeneralizedspikeinferencefromcalciumimaging AT hofersonjab adatabaseanddeeplearningtoolboxfornoiseoptimizedgeneralizedspikeinferencefromcalciumimaging AT kitamurakazuo adatabaseanddeeplearningtoolboxfornoiseoptimizedgeneralizedspikeinferencefromcalciumimaging AT helmchenfritjof adatabaseanddeeplearningtoolboxfornoiseoptimizedgeneralizedspikeinferencefromcalciumimaging AT friedrichrainerw adatabaseanddeeplearningtoolboxfornoiseoptimizedgeneralizedspikeinferencefromcalciumimaging AT rupprechtpeter databaseanddeeplearningtoolboxfornoiseoptimizedgeneralizedspikeinferencefromcalciumimaging AT cartastefano databaseanddeeplearningtoolboxfornoiseoptimizedgeneralizedspikeinferencefromcalciumimaging AT hoffmannadrian databaseanddeeplearningtoolboxfornoiseoptimizedgeneralizedspikeinferencefromcalciumimaging AT echizenmayumi databaseanddeeplearningtoolboxfornoiseoptimizedgeneralizedspikeinferencefromcalciumimaging AT blotantonin databaseanddeeplearningtoolboxfornoiseoptimizedgeneralizedspikeinferencefromcalciumimaging AT kwanalexc databaseanddeeplearningtoolboxfornoiseoptimizedgeneralizedspikeinferencefromcalciumimaging AT danyang databaseanddeeplearningtoolboxfornoiseoptimizedgeneralizedspikeinferencefromcalciumimaging AT hofersonjab databaseanddeeplearningtoolboxfornoiseoptimizedgeneralizedspikeinferencefromcalciumimaging AT kitamurakazuo databaseanddeeplearningtoolboxfornoiseoptimizedgeneralizedspikeinferencefromcalciumimaging AT helmchenfritjof databaseanddeeplearningtoolboxfornoiseoptimizedgeneralizedspikeinferencefromcalciumimaging AT friedrichrainerw databaseanddeeplearningtoolboxfornoiseoptimizedgeneralizedspikeinferencefromcalciumimaging |