Cargando…

A database and deep learning toolbox for noise-optimized, generalized spike inference from calcium imaging

Inference of action potentials (‘spikes’) from neuronal calcium signals is complicated by the scarcity of simultaneous measurements of action potentials and calcium signals (‘ground truth’). We compiled a large, diverse ground-truth database from publicly available and newly performed recordings in...

Descripción completa

Detalles Bibliográficos
Autores principales: Rupprecht, Peter, Carta, Stefano, Hoffmann, Adrian, Echizen, Mayumi, Blot, Antonin, Kwan, Alex C., Dan, Yang, Hofer, Sonja B., Kitamura, Kazuo, Helmchen, Fritjof, Friedrich, Rainer W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7611618/
https://www.ncbi.nlm.nih.gov/pubmed/34341584
http://dx.doi.org/10.1038/s41593-021-00895-5
_version_ 1783605289805676544
author Rupprecht, Peter
Carta, Stefano
Hoffmann, Adrian
Echizen, Mayumi
Blot, Antonin
Kwan, Alex C.
Dan, Yang
Hofer, Sonja B.
Kitamura, Kazuo
Helmchen, Fritjof
Friedrich, Rainer W.
author_facet Rupprecht, Peter
Carta, Stefano
Hoffmann, Adrian
Echizen, Mayumi
Blot, Antonin
Kwan, Alex C.
Dan, Yang
Hofer, Sonja B.
Kitamura, Kazuo
Helmchen, Fritjof
Friedrich, Rainer W.
author_sort Rupprecht, Peter
collection PubMed
description Inference of action potentials (‘spikes’) from neuronal calcium signals is complicated by the scarcity of simultaneous measurements of action potentials and calcium signals (‘ground truth’). We compiled a large, diverse ground-truth database from publicly available and newly performed recordings in zebrafish and mice covering a broad range of calcium indicators, cell types, and signal-to-noise ratios, comprising a total of >35 recording hours from 298 neurons. We developed an algorithm for spike inference (CASCADE) that is based on supervised deep networks, takes advantage of the ground-truth database, infers absolute spike rates, and outperforms existing model-based algorithms. To optimize performance for unseen imaging data, CASCADE retrains itself by resampling ground-truth data to match the respective sampling rate and noise level; therefore, no parameters need to be adjusted by the user. In addition, we developed systematic performance assessments for unseen data, openly release a resource toolbox, and provide a user-friendly cloud-based implementation.
format Online
Article
Text
id pubmed-7611618
institution National Center for Biotechnology Information
language English
publishDate 2021
record_format MEDLINE/PubMed
spelling pubmed-76116182022-02-02 A database and deep learning toolbox for noise-optimized, generalized spike inference from calcium imaging Rupprecht, Peter Carta, Stefano Hoffmann, Adrian Echizen, Mayumi Blot, Antonin Kwan, Alex C. Dan, Yang Hofer, Sonja B. Kitamura, Kazuo Helmchen, Fritjof Friedrich, Rainer W. Nat Neurosci Article Inference of action potentials (‘spikes’) from neuronal calcium signals is complicated by the scarcity of simultaneous measurements of action potentials and calcium signals (‘ground truth’). We compiled a large, diverse ground-truth database from publicly available and newly performed recordings in zebrafish and mice covering a broad range of calcium indicators, cell types, and signal-to-noise ratios, comprising a total of >35 recording hours from 298 neurons. We developed an algorithm for spike inference (CASCADE) that is based on supervised deep networks, takes advantage of the ground-truth database, infers absolute spike rates, and outperforms existing model-based algorithms. To optimize performance for unseen imaging data, CASCADE retrains itself by resampling ground-truth data to match the respective sampling rate and noise level; therefore, no parameters need to be adjusted by the user. In addition, we developed systematic performance assessments for unseen data, openly release a resource toolbox, and provide a user-friendly cloud-based implementation. 2021-09-01 2021-08-02 /pmc/articles/PMC7611618/ /pubmed/34341584 http://dx.doi.org/10.1038/s41593-021-00895-5 Text en https://www.springernature.com/gp/open-research/policies/accepted-manuscript-termsUsers may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
spellingShingle Article
Rupprecht, Peter
Carta, Stefano
Hoffmann, Adrian
Echizen, Mayumi
Blot, Antonin
Kwan, Alex C.
Dan, Yang
Hofer, Sonja B.
Kitamura, Kazuo
Helmchen, Fritjof
Friedrich, Rainer W.
A database and deep learning toolbox for noise-optimized, generalized spike inference from calcium imaging
title A database and deep learning toolbox for noise-optimized, generalized spike inference from calcium imaging
title_full A database and deep learning toolbox for noise-optimized, generalized spike inference from calcium imaging
title_fullStr A database and deep learning toolbox for noise-optimized, generalized spike inference from calcium imaging
title_full_unstemmed A database and deep learning toolbox for noise-optimized, generalized spike inference from calcium imaging
title_short A database and deep learning toolbox for noise-optimized, generalized spike inference from calcium imaging
title_sort database and deep learning toolbox for noise-optimized, generalized spike inference from calcium imaging
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7611618/
https://www.ncbi.nlm.nih.gov/pubmed/34341584
http://dx.doi.org/10.1038/s41593-021-00895-5
work_keys_str_mv AT rupprechtpeter adatabaseanddeeplearningtoolboxfornoiseoptimizedgeneralizedspikeinferencefromcalciumimaging
AT cartastefano adatabaseanddeeplearningtoolboxfornoiseoptimizedgeneralizedspikeinferencefromcalciumimaging
AT hoffmannadrian adatabaseanddeeplearningtoolboxfornoiseoptimizedgeneralizedspikeinferencefromcalciumimaging
AT echizenmayumi adatabaseanddeeplearningtoolboxfornoiseoptimizedgeneralizedspikeinferencefromcalciumimaging
AT blotantonin adatabaseanddeeplearningtoolboxfornoiseoptimizedgeneralizedspikeinferencefromcalciumimaging
AT kwanalexc adatabaseanddeeplearningtoolboxfornoiseoptimizedgeneralizedspikeinferencefromcalciumimaging
AT danyang adatabaseanddeeplearningtoolboxfornoiseoptimizedgeneralizedspikeinferencefromcalciumimaging
AT hofersonjab adatabaseanddeeplearningtoolboxfornoiseoptimizedgeneralizedspikeinferencefromcalciumimaging
AT kitamurakazuo adatabaseanddeeplearningtoolboxfornoiseoptimizedgeneralizedspikeinferencefromcalciumimaging
AT helmchenfritjof adatabaseanddeeplearningtoolboxfornoiseoptimizedgeneralizedspikeinferencefromcalciumimaging
AT friedrichrainerw adatabaseanddeeplearningtoolboxfornoiseoptimizedgeneralizedspikeinferencefromcalciumimaging
AT rupprechtpeter databaseanddeeplearningtoolboxfornoiseoptimizedgeneralizedspikeinferencefromcalciumimaging
AT cartastefano databaseanddeeplearningtoolboxfornoiseoptimizedgeneralizedspikeinferencefromcalciumimaging
AT hoffmannadrian databaseanddeeplearningtoolboxfornoiseoptimizedgeneralizedspikeinferencefromcalciumimaging
AT echizenmayumi databaseanddeeplearningtoolboxfornoiseoptimizedgeneralizedspikeinferencefromcalciumimaging
AT blotantonin databaseanddeeplearningtoolboxfornoiseoptimizedgeneralizedspikeinferencefromcalciumimaging
AT kwanalexc databaseanddeeplearningtoolboxfornoiseoptimizedgeneralizedspikeinferencefromcalciumimaging
AT danyang databaseanddeeplearningtoolboxfornoiseoptimizedgeneralizedspikeinferencefromcalciumimaging
AT hofersonjab databaseanddeeplearningtoolboxfornoiseoptimizedgeneralizedspikeinferencefromcalciumimaging
AT kitamurakazuo databaseanddeeplearningtoolboxfornoiseoptimizedgeneralizedspikeinferencefromcalciumimaging
AT helmchenfritjof databaseanddeeplearningtoolboxfornoiseoptimizedgeneralizedspikeinferencefromcalciumimaging
AT friedrichrainerw databaseanddeeplearningtoolboxfornoiseoptimizedgeneralizedspikeinferencefromcalciumimaging