Cargando…

Coherent spin-wave transport in an antiferromagnet

Magnonics is a research field complementary to spintronics, in which quanta of spin waves (magnons) replace electrons as information carriers, promising lower dissipation(1–3). The development of ultrafast nanoscale magnonic logic circuits calls for new tools and materials to generate coherent spin...

Descripción completa

Detalles Bibliográficos
Autores principales: Hortensius, J.R., Afanasiev, D., Matthiesen, M., Leenders, R., Citro, R., Kimel, A.V., Mikhaylovskiy, R.V., Ivanov, B.A., Caviglia, A.D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7611635/
https://www.ncbi.nlm.nih.gov/pubmed/34512793
http://dx.doi.org/10.1038/s41567-021-01290-4
_version_ 1783605291748687872
author Hortensius, J.R.
Afanasiev, D.
Matthiesen, M.
Leenders, R.
Citro, R.
Kimel, A.V.
Mikhaylovskiy, R.V.
Ivanov, B.A.
Caviglia, A.D.
author_facet Hortensius, J.R.
Afanasiev, D.
Matthiesen, M.
Leenders, R.
Citro, R.
Kimel, A.V.
Mikhaylovskiy, R.V.
Ivanov, B.A.
Caviglia, A.D.
author_sort Hortensius, J.R.
collection PubMed
description Magnonics is a research field complementary to spintronics, in which quanta of spin waves (magnons) replace electrons as information carriers, promising lower dissipation(1–3). The development of ultrafast nanoscale magnonic logic circuits calls for new tools and materials to generate coherent spin waves with frequencies as high, and wavelengths as short, as possible(4,5). Antiferromagnets can host spin waves at terahertz (THz) frequencies and are therefore seen as a future platform for the fastest and the least dissipative transfer of information(6–11). However, the generation of short-wavelength coherent propagating magnons in antiferromagnets has so far remained elusive. Here we report the efficient emission and detection of a nanometer-scale wavepacket of coherent propagating magnons in antiferromagnetic DyFeO(3) using ultrashort pulses of light. The subwavelength confinement of the laser field due to large absorption creates a strongly non-uniform spin excitation profile, enabling the propagation of a broadband continuum of coherent THz spin waves. The wavepacket contains magnons with a shortest detected wavelength of 125 nm that propagate with supersonic velocities of more than 13 km/s into the material. This source of coherent short-wavelength spin carriers opens up new prospects for THz antiferromagnetic magnonics and coherence-mediated logic devices at THz frequencies.
format Online
Article
Text
id pubmed-7611635
institution National Center for Biotechnology Information
language English
publishDate 2021
record_format MEDLINE/PubMed
spelling pubmed-76116352022-01-29 Coherent spin-wave transport in an antiferromagnet Hortensius, J.R. Afanasiev, D. Matthiesen, M. Leenders, R. Citro, R. Kimel, A.V. Mikhaylovskiy, R.V. Ivanov, B.A. Caviglia, A.D. Nat Phys Article Magnonics is a research field complementary to spintronics, in which quanta of spin waves (magnons) replace electrons as information carriers, promising lower dissipation(1–3). The development of ultrafast nanoscale magnonic logic circuits calls for new tools and materials to generate coherent spin waves with frequencies as high, and wavelengths as short, as possible(4,5). Antiferromagnets can host spin waves at terahertz (THz) frequencies and are therefore seen as a future platform for the fastest and the least dissipative transfer of information(6–11). However, the generation of short-wavelength coherent propagating magnons in antiferromagnets has so far remained elusive. Here we report the efficient emission and detection of a nanometer-scale wavepacket of coherent propagating magnons in antiferromagnetic DyFeO(3) using ultrashort pulses of light. The subwavelength confinement of the laser field due to large absorption creates a strongly non-uniform spin excitation profile, enabling the propagation of a broadband continuum of coherent THz spin waves. The wavepacket contains magnons with a shortest detected wavelength of 125 nm that propagate with supersonic velocities of more than 13 km/s into the material. This source of coherent short-wavelength spin carriers opens up new prospects for THz antiferromagnetic magnonics and coherence-mediated logic devices at THz frequencies. 2021-09 2021-07-29 /pmc/articles/PMC7611635/ /pubmed/34512793 http://dx.doi.org/10.1038/s41567-021-01290-4 Text en http://www.nature.com/authors/editorial_policies/license.html#termsUsers may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Hortensius, J.R.
Afanasiev, D.
Matthiesen, M.
Leenders, R.
Citro, R.
Kimel, A.V.
Mikhaylovskiy, R.V.
Ivanov, B.A.
Caviglia, A.D.
Coherent spin-wave transport in an antiferromagnet
title Coherent spin-wave transport in an antiferromagnet
title_full Coherent spin-wave transport in an antiferromagnet
title_fullStr Coherent spin-wave transport in an antiferromagnet
title_full_unstemmed Coherent spin-wave transport in an antiferromagnet
title_short Coherent spin-wave transport in an antiferromagnet
title_sort coherent spin-wave transport in an antiferromagnet
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7611635/
https://www.ncbi.nlm.nih.gov/pubmed/34512793
http://dx.doi.org/10.1038/s41567-021-01290-4
work_keys_str_mv AT hortensiusjr coherentspinwavetransportinanantiferromagnet
AT afanasievd coherentspinwavetransportinanantiferromagnet
AT matthiesenm coherentspinwavetransportinanantiferromagnet
AT leendersr coherentspinwavetransportinanantiferromagnet
AT citror coherentspinwavetransportinanantiferromagnet
AT kimelav coherentspinwavetransportinanantiferromagnet
AT mikhaylovskiyrv coherentspinwavetransportinanantiferromagnet
AT ivanovba coherentspinwavetransportinanantiferromagnet
AT cavigliaad coherentspinwavetransportinanantiferromagnet