Cargando…
Mitigating bias in machine learning for medicine
Several sources of bias can affect the performance of machine learning systems used in medicine and potentially impact clinical care. Here, we discuss solutions to mitigate bias across the different development steps of machine learning-based systems for medical applications.
Autores principales: | Vokinger, Kerstin N., Feuerriegel, Stefan, Kesselheim, Aaron S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7611652/ https://www.ncbi.nlm.nih.gov/pubmed/34522916 http://dx.doi.org/10.1038/s43856-021-00028-w |
Ejemplares similares
-
Association between FDA and EMA expedited approval programs and therapeutic value of new medicines: retrospective cohort study
por: Hwang, Thomas J, et al.
Publicado: (2020) -
Application of orphan drug designation to cancer treatments (2008–2017): a comprehensive and comparative analysis of the USA and EU
por: Vokinger, Kerstin Noëlle, et al.
Publicado: (2019) -
Therapeutic Value Assessments of Novel Medicines in the US and Europe, 2018-2019
por: Vokinger, Kerstin N., et al.
Publicado: (2022) -
Therapeutic Value of Drugs Granted Accelerated Approval or Conditional Marketing Authorization in the US and Europe From 2007 to 2021
por: Vokinger, Kerstin N., et al.
Publicado: (2022) -
Bias in Medicine: Lessons Learned and Mitigation Strategies
por: Hammond, M. Elizabeth H., et al.
Publicado: (2021)