Cargando…
Modality Attention and Sampling Enables Deep Learning with Heterogeneous Marker Combinations in Fluorescence Microscopy
Fluorescence microscopy allows for a detailed inspection of cells, cellular networks, and anatomical landmarks by staining with a variety of carefully-selected markers visualized as color channels. Quantitative characterization of structures in acquired images often relies on automatic image analysi...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7611676/ https://www.ncbi.nlm.nih.gov/pubmed/34541455 http://dx.doi.org/10.1038/s42256-021-00379-y |
_version_ | 1783605296048898048 |
---|---|
author | Gomariz, Alvaro Portenier, Tiziano Helbling, Patrick M. Isringhausen, Stephan Suessbier, Ute Nombela-Arrieta, César Goksel, Orcun |
author_facet | Gomariz, Alvaro Portenier, Tiziano Helbling, Patrick M. Isringhausen, Stephan Suessbier, Ute Nombela-Arrieta, César Goksel, Orcun |
author_sort | Gomariz, Alvaro |
collection | PubMed |
description | Fluorescence microscopy allows for a detailed inspection of cells, cellular networks, and anatomical landmarks by staining with a variety of carefully-selected markers visualized as color channels. Quantitative characterization of structures in acquired images often relies on automatic image analysis methods. Despite the success of deep learning methods in other vision applications, their potential for fluorescence image analysis remains underexploited. One reason lies in the considerable workload required to train accurate models, which are normally specific for a given combination of markers, and therefore applicable to a very restricted number of experimental settings. We herein propose Marker Sampling and Excite — a neural network approach with a modality sampling strategy and a novel attention module that together enable (i) flexible training with heterogeneous datasets with combinations of markers and (ii) successful utility of learned models on arbitrary subsets of markers prospectively. We show that our single neural network solution performs comparably to an upper bound scenario where an ensemble of many networks is naïvely trained for each possible marker combination separately. In addition, we demonstrate the feasibility of this framework in high-throughput biological analysis by revising a recent quantitative characterization of bone marrow vasculature in 3D confocal microscopy datasets and further confirm the validity of our approach on an additional, significantly different dataset of microvessels in fetal liver tissues. Not only can our work substantially ameliorate the use of deep learning in fluorescence microscopy analysis, but it can also be utilized in other fields with incomplete data acquisitions and missing modalities. |
format | Online Article Text |
id | pubmed-7611676 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
record_format | MEDLINE/PubMed |
spelling | pubmed-76116762021-09-17 Modality Attention and Sampling Enables Deep Learning with Heterogeneous Marker Combinations in Fluorescence Microscopy Gomariz, Alvaro Portenier, Tiziano Helbling, Patrick M. Isringhausen, Stephan Suessbier, Ute Nombela-Arrieta, César Goksel, Orcun Nat Mach Intell Article Fluorescence microscopy allows for a detailed inspection of cells, cellular networks, and anatomical landmarks by staining with a variety of carefully-selected markers visualized as color channels. Quantitative characterization of structures in acquired images often relies on automatic image analysis methods. Despite the success of deep learning methods in other vision applications, their potential for fluorescence image analysis remains underexploited. One reason lies in the considerable workload required to train accurate models, which are normally specific for a given combination of markers, and therefore applicable to a very restricted number of experimental settings. We herein propose Marker Sampling and Excite — a neural network approach with a modality sampling strategy and a novel attention module that together enable (i) flexible training with heterogeneous datasets with combinations of markers and (ii) successful utility of learned models on arbitrary subsets of markers prospectively. We show that our single neural network solution performs comparably to an upper bound scenario where an ensemble of many networks is naïvely trained for each possible marker combination separately. In addition, we demonstrate the feasibility of this framework in high-throughput biological analysis by revising a recent quantitative characterization of bone marrow vasculature in 3D confocal microscopy datasets and further confirm the validity of our approach on an additional, significantly different dataset of microvessels in fetal liver tissues. Not only can our work substantially ameliorate the use of deep learning in fluorescence microscopy analysis, but it can also be utilized in other fields with incomplete data acquisitions and missing modalities. 2021-09 2021-08-09 /pmc/articles/PMC7611676/ /pubmed/34541455 http://dx.doi.org/10.1038/s42256-021-00379-y Text en https://www.springernature.com/gp/open-research/policies/accepted-manuscript-termsUsers may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms |
spellingShingle | Article Gomariz, Alvaro Portenier, Tiziano Helbling, Patrick M. Isringhausen, Stephan Suessbier, Ute Nombela-Arrieta, César Goksel, Orcun Modality Attention and Sampling Enables Deep Learning with Heterogeneous Marker Combinations in Fluorescence Microscopy |
title | Modality Attention and Sampling Enables Deep Learning with Heterogeneous Marker Combinations in Fluorescence Microscopy |
title_full | Modality Attention and Sampling Enables Deep Learning with Heterogeneous Marker Combinations in Fluorescence Microscopy |
title_fullStr | Modality Attention and Sampling Enables Deep Learning with Heterogeneous Marker Combinations in Fluorescence Microscopy |
title_full_unstemmed | Modality Attention and Sampling Enables Deep Learning with Heterogeneous Marker Combinations in Fluorescence Microscopy |
title_short | Modality Attention and Sampling Enables Deep Learning with Heterogeneous Marker Combinations in Fluorescence Microscopy |
title_sort | modality attention and sampling enables deep learning with heterogeneous marker combinations in fluorescence microscopy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7611676/ https://www.ncbi.nlm.nih.gov/pubmed/34541455 http://dx.doi.org/10.1038/s42256-021-00379-y |
work_keys_str_mv | AT gomarizalvaro modalityattentionandsamplingenablesdeeplearningwithheterogeneousmarkercombinationsinfluorescencemicroscopy AT porteniertiziano modalityattentionandsamplingenablesdeeplearningwithheterogeneousmarkercombinationsinfluorescencemicroscopy AT helblingpatrickm modalityattentionandsamplingenablesdeeplearningwithheterogeneousmarkercombinationsinfluorescencemicroscopy AT isringhausenstephan modalityattentionandsamplingenablesdeeplearningwithheterogeneousmarkercombinationsinfluorescencemicroscopy AT suessbierute modalityattentionandsamplingenablesdeeplearningwithheterogeneousmarkercombinationsinfluorescencemicroscopy AT nombelaarrietacesar modalityattentionandsamplingenablesdeeplearningwithheterogeneousmarkercombinationsinfluorescencemicroscopy AT gokselorcun modalityattentionandsamplingenablesdeeplearningwithheterogeneousmarkercombinationsinfluorescencemicroscopy |