Cargando…
Mechanical compartmentalization of the intestinal organoid enables crypt folding and collective cell migration
Intestinal organoids capture essential features of the intestinal epithelium such as crypt folding, cellular compartmentalization and collective movements. Each of these processes and their coordination require patterned forces that are currently unknown. Here we map three-dimensional cellular force...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7611697/ https://www.ncbi.nlm.nih.gov/pubmed/34155382 http://dx.doi.org/10.1038/s41556-021-00699-6 |
_version_ | 1783605299165265920 |
---|---|
author | Pérez-González, Carlos Ceada, Gerardo Greco, Francesco Matejčić, Marija Gómez-González, Manuel Castro, Natalia Menendez, Anghara Kale, Sohan Krndija, Denis Clark, Andrew G. Gannavarapu, Venkata Ram Álvarez-Varela, Adrián Roca-Cusachs, Pere Batlle, Eduard Vignjevic, Danijela Matic Arroyo, Marino Trepat, Xavier |
author_facet | Pérez-González, Carlos Ceada, Gerardo Greco, Francesco Matejčić, Marija Gómez-González, Manuel Castro, Natalia Menendez, Anghara Kale, Sohan Krndija, Denis Clark, Andrew G. Gannavarapu, Venkata Ram Álvarez-Varela, Adrián Roca-Cusachs, Pere Batlle, Eduard Vignjevic, Danijela Matic Arroyo, Marino Trepat, Xavier |
author_sort | Pérez-González, Carlos |
collection | PubMed |
description | Intestinal organoids capture essential features of the intestinal epithelium such as crypt folding, cellular compartmentalization and collective movements. Each of these processes and their coordination require patterned forces that are currently unknown. Here we map three-dimensional cellular forces in mouse intestinal organoids grown on soft hydrogels. We show that these organoids exhibit a non-monotonic stress distribution that defines mechanical and functional compartments. The stem cell compartment pushes the ECM and folds through apical constriction, whereas the transit amplifying zone pulls the ECM and elongates through basal constriction. The size of the stem cell compartment depends on ECM stiffness and endogenous cellular forces. Computational modeling reveals that crypt shape and force distribution rely on cell surface tensions following cortical actomyosin density. Finally, cells are pulled out of the crypt along a gradient of increasing tension. Our study unveils how patterned forces enable compartmentalization, folding and collective migration in the intestinal epithelium. |
format | Online Article Text |
id | pubmed-7611697 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
record_format | MEDLINE/PubMed |
spelling | pubmed-76116972021-12-21 Mechanical compartmentalization of the intestinal organoid enables crypt folding and collective cell migration Pérez-González, Carlos Ceada, Gerardo Greco, Francesco Matejčić, Marija Gómez-González, Manuel Castro, Natalia Menendez, Anghara Kale, Sohan Krndija, Denis Clark, Andrew G. Gannavarapu, Venkata Ram Álvarez-Varela, Adrián Roca-Cusachs, Pere Batlle, Eduard Vignjevic, Danijela Matic Arroyo, Marino Trepat, Xavier Nat Cell Biol Article Intestinal organoids capture essential features of the intestinal epithelium such as crypt folding, cellular compartmentalization and collective movements. Each of these processes and their coordination require patterned forces that are currently unknown. Here we map three-dimensional cellular forces in mouse intestinal organoids grown on soft hydrogels. We show that these organoids exhibit a non-monotonic stress distribution that defines mechanical and functional compartments. The stem cell compartment pushes the ECM and folds through apical constriction, whereas the transit amplifying zone pulls the ECM and elongates through basal constriction. The size of the stem cell compartment depends on ECM stiffness and endogenous cellular forces. Computational modeling reveals that crypt shape and force distribution rely on cell surface tensions following cortical actomyosin density. Finally, cells are pulled out of the crypt along a gradient of increasing tension. Our study unveils how patterned forces enable compartmentalization, folding and collective migration in the intestinal epithelium. 2021-07-01 2021-06-21 /pmc/articles/PMC7611697/ /pubmed/34155382 http://dx.doi.org/10.1038/s41556-021-00699-6 Text en http://www.nature.com/authors/editorial_policies/license.html#termsUsers may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Pérez-González, Carlos Ceada, Gerardo Greco, Francesco Matejčić, Marija Gómez-González, Manuel Castro, Natalia Menendez, Anghara Kale, Sohan Krndija, Denis Clark, Andrew G. Gannavarapu, Venkata Ram Álvarez-Varela, Adrián Roca-Cusachs, Pere Batlle, Eduard Vignjevic, Danijela Matic Arroyo, Marino Trepat, Xavier Mechanical compartmentalization of the intestinal organoid enables crypt folding and collective cell migration |
title | Mechanical compartmentalization of the intestinal organoid enables crypt folding and collective cell migration |
title_full | Mechanical compartmentalization of the intestinal organoid enables crypt folding and collective cell migration |
title_fullStr | Mechanical compartmentalization of the intestinal organoid enables crypt folding and collective cell migration |
title_full_unstemmed | Mechanical compartmentalization of the intestinal organoid enables crypt folding and collective cell migration |
title_short | Mechanical compartmentalization of the intestinal organoid enables crypt folding and collective cell migration |
title_sort | mechanical compartmentalization of the intestinal organoid enables crypt folding and collective cell migration |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7611697/ https://www.ncbi.nlm.nih.gov/pubmed/34155382 http://dx.doi.org/10.1038/s41556-021-00699-6 |
work_keys_str_mv | AT perezgonzalezcarlos mechanicalcompartmentalizationoftheintestinalorganoidenablescryptfoldingandcollectivecellmigration AT ceadagerardo mechanicalcompartmentalizationoftheintestinalorganoidenablescryptfoldingandcollectivecellmigration AT grecofrancesco mechanicalcompartmentalizationoftheintestinalorganoidenablescryptfoldingandcollectivecellmigration AT matejcicmarija mechanicalcompartmentalizationoftheintestinalorganoidenablescryptfoldingandcollectivecellmigration AT gomezgonzalezmanuel mechanicalcompartmentalizationoftheintestinalorganoidenablescryptfoldingandcollectivecellmigration AT castronatalia mechanicalcompartmentalizationoftheintestinalorganoidenablescryptfoldingandcollectivecellmigration AT menendezanghara mechanicalcompartmentalizationoftheintestinalorganoidenablescryptfoldingandcollectivecellmigration AT kalesohan mechanicalcompartmentalizationoftheintestinalorganoidenablescryptfoldingandcollectivecellmigration AT krndijadenis mechanicalcompartmentalizationoftheintestinalorganoidenablescryptfoldingandcollectivecellmigration AT clarkandrewg mechanicalcompartmentalizationoftheintestinalorganoidenablescryptfoldingandcollectivecellmigration AT gannavarapuvenkataram mechanicalcompartmentalizationoftheintestinalorganoidenablescryptfoldingandcollectivecellmigration AT alvarezvarelaadrian mechanicalcompartmentalizationoftheintestinalorganoidenablescryptfoldingandcollectivecellmigration AT rocacusachspere mechanicalcompartmentalizationoftheintestinalorganoidenablescryptfoldingandcollectivecellmigration AT batlleeduard mechanicalcompartmentalizationoftheintestinalorganoidenablescryptfoldingandcollectivecellmigration AT vignjevicdanijelamatic mechanicalcompartmentalizationoftheintestinalorganoidenablescryptfoldingandcollectivecellmigration AT arroyomarino mechanicalcompartmentalizationoftheintestinalorganoidenablescryptfoldingandcollectivecellmigration AT trepatxavier mechanicalcompartmentalizationoftheintestinalorganoidenablescryptfoldingandcollectivecellmigration |