Cargando…
Photothermal nanofibers enable safe engineering of therapeutic cells
Nanoparticle-sensitized photoporation is an upcoming approach for intracellular delivery of biologics, combining high efficiency and throughput with excellent cell viability. However, as it relies on close contact between nanoparticles and cells, its translation towards clinical applications is hamp...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612007/ https://www.ncbi.nlm.nih.gov/pubmed/34675410 http://dx.doi.org/10.1038/s41565-021-00976-3 |
Sumario: | Nanoparticle-sensitized photoporation is an upcoming approach for intracellular delivery of biologics, combining high efficiency and throughput with excellent cell viability. However, as it relies on close contact between nanoparticles and cells, its translation towards clinical applications is hampered by safety and regulatory concerns. Here, we show that light-sensitive iron oxide nanoparticles (IONPs) embedded in biocompatible electrospun nanofibers induce membrane permeabilization by photothermal effects without direct cellular contact with IONPs. The photothermal nanofibers are successfully used to deliver effector molecules, including CRISPR/Cas9 ribonucleoprotein complexes and siRNA, in adherent and suspension cells, including embryonic stem cells and hard-to-transfect T-cells without affecting cell proliferation or phenotype. In vivo experiments furthermore demonstrate successful tumor regression in mice treated with CAR-T cells in which expression of PD1 is downregulated after nanofiber photoporation with siPD1. In conclusion, cell membrane permeabilization with photothermal nanofibers is a promising concept towards the safe and more efficient production of engineered cells for therapeutic applications, including stem cell or adoptive T cell therapy. |
---|