Cargando…
Experimental quantum speed-up in reinforcement learning agents
As the field of artificial intelligence advances, the demand for algorithms that can learn quickly and efficiently increases. An important paradigm within artificial intelligence is reinforcement learning [1], where decision-making entities called agents interact with environments and learn by updat...
Autores principales: | Saggio, V., Asenbeck, B. E., Hamann, A., Strömberg, T., Schiansky, P., Dunjko, V., Friis, N., Harris, N. C., Hochberg, M., Englund, D., Wölk, S., Briegel, H. J., Walther, P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612051/ https://www.ncbi.nlm.nih.gov/pubmed/33692560 http://dx.doi.org/10.1038/s41586-021-03242-7 |
Ejemplares similares
-
Quantum-accessible reinforcement learning beyond strictly epochal environments
por: Hamann, A., et al.
Publicado: (2021) -
On the convergence of projective-simulation–based reinforcement learning in Markov decision processes
por: Boyajian, W. L., et al.
Publicado: (2020) -
Quantum machine learning beyond kernel methods
por: Jerbi, Sofiene, et al.
Publicado: (2023) -
Demonstration of quantum-digital payments
por: Schiansky, Peter, et al.
Publicado: (2023) -
Fault-tolerant interface between quantum memories and quantum processors
por: Poulsen Nautrup, Hendrik, et al.
Publicado: (2017)