Cargando…

Functional Impact of Genomic Complexity on the Transcriptome of Multiple Myeloma

PURPOSE: Multiple myeloma is a biologically heterogenous plasma-cell disorder. In this study, we aimed at dissecting the functional impact on transcriptome of gene mutations, copy-number abnormalities (CNA), and chromosomal rearrangements (CR). Moreover, we applied a geno-transcriptomic approach to...

Descripción completa

Detalles Bibliográficos
Autores principales: Ziccheddu, Bachisio, Da Vià, Matteo C., Lionetti, Marta, Maeda, Akihiro, Morlupi, Silvia, Dugo, Matteo, Todoerti, Katia, Oliva, Stefania, D'Agostino, Mattia, Corradini, Paolo, Landgren, Ola, Iorio, Francesco, Pettine, Loredana, Pompa, Alessandra, Manzoni, Martina, Baldini, Luca, Neri, Antonino, Maura, Francesco, Bolli, Niccolò
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for Cancer Research 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612071/
https://www.ncbi.nlm.nih.gov/pubmed/34526359
http://dx.doi.org/10.1158/1078-0432.CCR-20-4366
_version_ 1783605330709577728
author Ziccheddu, Bachisio
Da Vià, Matteo C.
Lionetti, Marta
Maeda, Akihiro
Morlupi, Silvia
Dugo, Matteo
Todoerti, Katia
Oliva, Stefania
D'Agostino, Mattia
Corradini, Paolo
Landgren, Ola
Iorio, Francesco
Pettine, Loredana
Pompa, Alessandra
Manzoni, Martina
Baldini, Luca
Neri, Antonino
Maura, Francesco
Bolli, Niccolò
author_facet Ziccheddu, Bachisio
Da Vià, Matteo C.
Lionetti, Marta
Maeda, Akihiro
Morlupi, Silvia
Dugo, Matteo
Todoerti, Katia
Oliva, Stefania
D'Agostino, Mattia
Corradini, Paolo
Landgren, Ola
Iorio, Francesco
Pettine, Loredana
Pompa, Alessandra
Manzoni, Martina
Baldini, Luca
Neri, Antonino
Maura, Francesco
Bolli, Niccolò
author_sort Ziccheddu, Bachisio
collection PubMed
description PURPOSE: Multiple myeloma is a biologically heterogenous plasma-cell disorder. In this study, we aimed at dissecting the functional impact on transcriptome of gene mutations, copy-number abnormalities (CNA), and chromosomal rearrangements (CR). Moreover, we applied a geno-transcriptomic approach to identify specific biomarkers for personalized treatments. EXPERIMENTAL DESIGN: We analyzed 514 newly diagnosed patients from the IA12 release of the CoMMpass study, accounting for mutations in multiple myeloma driver genes, structural variants, copy-number segments, and raw-transcript counts. We performed an in silico drug sensitivity screen (DSS), interrogating the Cancer Dependency Map (DepMap) dataset after anchoring cell lines to primary tumor samples using the Celligner algorithm. RESULTS: Immunoglobulin translocations, hyperdiploidy and chr(1q)gain/amps were associated with the highest number of deregulated genes. Other CNAs and specific gene mutations had a lower but very distinct impact affecting specific pathways. Many recurrent genes showed a hotspot (HS)-specific effect. The clinical relevance of double-hit multiple myeloma found strong biological bases in our analysis. Biallelic deletions of tumor suppressors and chr(1q)-amplifications showed the greatest impact on gene expression, deregulating pathways related to cell cycle, proliferation, and expression of immunotherapy targets. Moreover, our in silico DSS showed that not only t(11;14) but also chr(1q)gain/amps and CYLD inactivation predicted differential expression of transcripts of the BCL2 axis and response to venetoclax. CONCLUSIONS: The multiple myeloma genomic architecture and transcriptome have a strict connection, led by CNAs and CRs. Gene mutations impacted especially with HS-mutations of oncogenes and biallelic tumor suppressor gene inactivation. Finally, a comprehensive geno-transcriptomic analysis allows the identification of specific deregulated pathways and candidate biomarkers for personalized treatments in multiple myeloma.
format Online
Article
Text
id pubmed-7612071
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Association for Cancer Research
record_format MEDLINE/PubMed
spelling pubmed-76120712021-12-03 Functional Impact of Genomic Complexity on the Transcriptome of Multiple Myeloma Ziccheddu, Bachisio Da Vià, Matteo C. Lionetti, Marta Maeda, Akihiro Morlupi, Silvia Dugo, Matteo Todoerti, Katia Oliva, Stefania D'Agostino, Mattia Corradini, Paolo Landgren, Ola Iorio, Francesco Pettine, Loredana Pompa, Alessandra Manzoni, Martina Baldini, Luca Neri, Antonino Maura, Francesco Bolli, Niccolò Clin Cancer Res Precision Medicine and Imaging PURPOSE: Multiple myeloma is a biologically heterogenous plasma-cell disorder. In this study, we aimed at dissecting the functional impact on transcriptome of gene mutations, copy-number abnormalities (CNA), and chromosomal rearrangements (CR). Moreover, we applied a geno-transcriptomic approach to identify specific biomarkers for personalized treatments. EXPERIMENTAL DESIGN: We analyzed 514 newly diagnosed patients from the IA12 release of the CoMMpass study, accounting for mutations in multiple myeloma driver genes, structural variants, copy-number segments, and raw-transcript counts. We performed an in silico drug sensitivity screen (DSS), interrogating the Cancer Dependency Map (DepMap) dataset after anchoring cell lines to primary tumor samples using the Celligner algorithm. RESULTS: Immunoglobulin translocations, hyperdiploidy and chr(1q)gain/amps were associated with the highest number of deregulated genes. Other CNAs and specific gene mutations had a lower but very distinct impact affecting specific pathways. Many recurrent genes showed a hotspot (HS)-specific effect. The clinical relevance of double-hit multiple myeloma found strong biological bases in our analysis. Biallelic deletions of tumor suppressors and chr(1q)-amplifications showed the greatest impact on gene expression, deregulating pathways related to cell cycle, proliferation, and expression of immunotherapy targets. Moreover, our in silico DSS showed that not only t(11;14) but also chr(1q)gain/amps and CYLD inactivation predicted differential expression of transcripts of the BCL2 axis and response to venetoclax. CONCLUSIONS: The multiple myeloma genomic architecture and transcriptome have a strict connection, led by CNAs and CRs. Gene mutations impacted especially with HS-mutations of oncogenes and biallelic tumor suppressor gene inactivation. Finally, a comprehensive geno-transcriptomic analysis allows the identification of specific deregulated pathways and candidate biomarkers for personalized treatments in multiple myeloma. American Association for Cancer Research 2021-12-01 2021-09-15 /pmc/articles/PMC7612071/ /pubmed/34526359 http://dx.doi.org/10.1158/1078-0432.CCR-20-4366 Text en ©2021 The Authors; Published by the American Association for Cancer Research https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.
spellingShingle Precision Medicine and Imaging
Ziccheddu, Bachisio
Da Vià, Matteo C.
Lionetti, Marta
Maeda, Akihiro
Morlupi, Silvia
Dugo, Matteo
Todoerti, Katia
Oliva, Stefania
D'Agostino, Mattia
Corradini, Paolo
Landgren, Ola
Iorio, Francesco
Pettine, Loredana
Pompa, Alessandra
Manzoni, Martina
Baldini, Luca
Neri, Antonino
Maura, Francesco
Bolli, Niccolò
Functional Impact of Genomic Complexity on the Transcriptome of Multiple Myeloma
title Functional Impact of Genomic Complexity on the Transcriptome of Multiple Myeloma
title_full Functional Impact of Genomic Complexity on the Transcriptome of Multiple Myeloma
title_fullStr Functional Impact of Genomic Complexity on the Transcriptome of Multiple Myeloma
title_full_unstemmed Functional Impact of Genomic Complexity on the Transcriptome of Multiple Myeloma
title_short Functional Impact of Genomic Complexity on the Transcriptome of Multiple Myeloma
title_sort functional impact of genomic complexity on the transcriptome of multiple myeloma
topic Precision Medicine and Imaging
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612071/
https://www.ncbi.nlm.nih.gov/pubmed/34526359
http://dx.doi.org/10.1158/1078-0432.CCR-20-4366
work_keys_str_mv AT ziccheddubachisio functionalimpactofgenomiccomplexityonthetranscriptomeofmultiplemyeloma
AT daviamatteoc functionalimpactofgenomiccomplexityonthetranscriptomeofmultiplemyeloma
AT lionettimarta functionalimpactofgenomiccomplexityonthetranscriptomeofmultiplemyeloma
AT maedaakihiro functionalimpactofgenomiccomplexityonthetranscriptomeofmultiplemyeloma
AT morlupisilvia functionalimpactofgenomiccomplexityonthetranscriptomeofmultiplemyeloma
AT dugomatteo functionalimpactofgenomiccomplexityonthetranscriptomeofmultiplemyeloma
AT todoertikatia functionalimpactofgenomiccomplexityonthetranscriptomeofmultiplemyeloma
AT olivastefania functionalimpactofgenomiccomplexityonthetranscriptomeofmultiplemyeloma
AT dagostinomattia functionalimpactofgenomiccomplexityonthetranscriptomeofmultiplemyeloma
AT corradinipaolo functionalimpactofgenomiccomplexityonthetranscriptomeofmultiplemyeloma
AT landgrenola functionalimpactofgenomiccomplexityonthetranscriptomeofmultiplemyeloma
AT ioriofrancesco functionalimpactofgenomiccomplexityonthetranscriptomeofmultiplemyeloma
AT pettineloredana functionalimpactofgenomiccomplexityonthetranscriptomeofmultiplemyeloma
AT pompaalessandra functionalimpactofgenomiccomplexityonthetranscriptomeofmultiplemyeloma
AT manzonimartina functionalimpactofgenomiccomplexityonthetranscriptomeofmultiplemyeloma
AT baldiniluca functionalimpactofgenomiccomplexityonthetranscriptomeofmultiplemyeloma
AT neriantonino functionalimpactofgenomiccomplexityonthetranscriptomeofmultiplemyeloma
AT maurafrancesco functionalimpactofgenomiccomplexityonthetranscriptomeofmultiplemyeloma
AT bolliniccolo functionalimpactofgenomiccomplexityonthetranscriptomeofmultiplemyeloma