Cargando…
A Bayesian multivariate factor analysis model for evaluating an intervention by using observational time series data on multiple outcomes
A problem that is frequently encountered in many areas of scientific research is that of estimating the effect of a non-randomized binary intervention on an outcome of interest by using time series data on units that received the intervention (‘treated’) and units that did not (‘controls’). One popu...
Autores principales: | Samartsidis, Pantelis, Seaman, Shaun R., Montagna, Silvia, Charlett, André, Hickman, Matthew, De Angelis, Daniela |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612111/ https://www.ncbi.nlm.nih.gov/pubmed/34949904 http://dx.doi.org/10.1111/rssa.12569 |
Ejemplares similares
-
Nowcasting COVID‐19 deaths in England by age and region
por: Seaman, Shaun R., et al.
Publicado: (2022) -
Evaluating the impact on health outcomes of an event that resulted in a delay in contact tracing of COVID-19 cases in England, September 2020: an observational study
por: Findlater, Lucy, et al.
Publicado: (2023) -
Bayesian time-aligned factor analysis of paired multivariate time series
por: Roy, Arkaprava, et al.
Publicado: (2021) -
Multivariate-Time-Series-Driven Real-time Anomaly Detection Based on Bayesian Network
por: Ding, Nan, et al.
Publicado: (2018) -
Bayesian time series models
por: Barber, David, et al.
Publicado: (2011)