Cargando…
MARK4 controls ischaemic heart failure through microtubule detyrosination
Myocardial infarction (MI) is a major cause of premature adult death. Compromised cardiac function after MI leads to chronic heart failure with systemic health complications and high mortality rate(1). Effective therapeutic strategies are highly needed to improve the recovery of cardiac function aft...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612144/ https://www.ncbi.nlm.nih.gov/pubmed/34040253 http://dx.doi.org/10.1038/s41586-021-03573-5 |
_version_ | 1783605338631569408 |
---|---|
author | Yu, Xian Chen, Xiao Amrute-Nayak, Mamta Allgeyer, Edward Zhao, Aite Chenoweth, Hannah Clement, Marc Harrison, James Doreth, Christian Sirinakis, George Krieg, Thomas Zhou, Huiyu Huang, Hongda Tokuraku, Kiyotaka St Johnston, Daniel Mallat, Ziad Li, Xuan |
author_facet | Yu, Xian Chen, Xiao Amrute-Nayak, Mamta Allgeyer, Edward Zhao, Aite Chenoweth, Hannah Clement, Marc Harrison, James Doreth, Christian Sirinakis, George Krieg, Thomas Zhou, Huiyu Huang, Hongda Tokuraku, Kiyotaka St Johnston, Daniel Mallat, Ziad Li, Xuan |
author_sort | Yu, Xian |
collection | PubMed |
description | Myocardial infarction (MI) is a major cause of premature adult death. Compromised cardiac function after MI leads to chronic heart failure with systemic health complications and high mortality rate(1). Effective therapeutic strategies are highly needed to improve the recovery of cardiac function after MI. More specifically, there is a major unmet need for a new class of drugs that improve cardiomyocyte contractility, because currently available inotropic therapies have been associated with high morbidity and mortality in patients with systolic heart failure(2,3), or have shown a very modest risk reduction(4). Microtubule detyrosination is emerging as an important mechanism of regulation of cardiomyocyte contractility(5). Here, we show that deficiency of Microtubule-Affinity Regulating Kinase 4 (MARK4) substantially limits the reduction of left ventricular ejection fraction (LVEF) after acute MI in mice, without affecting infarct size or cardiac remodeling. Mechanistically, we provide evidence that MARK4 regulates cardiomyocyte contractility through promoting microtubule-associated protein 4 (MAP4) phosphorylation, thereby facilitating the access of Vasohibin 2 (VASH2), a tubulin carboxypeptidase (TCP), to microtubules for α-tubulin detyrosination. Our results show how cardiomyocyte microtubule detyrosination is finely tuned by MARK4 to regulate cardiac inotropy, and identify MARK4 as a promising druggable therapeutic target for improving cardiac function after MI. |
format | Online Article Text |
id | pubmed-7612144 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
record_format | MEDLINE/PubMed |
spelling | pubmed-76121442021-12-31 MARK4 controls ischaemic heart failure through microtubule detyrosination Yu, Xian Chen, Xiao Amrute-Nayak, Mamta Allgeyer, Edward Zhao, Aite Chenoweth, Hannah Clement, Marc Harrison, James Doreth, Christian Sirinakis, George Krieg, Thomas Zhou, Huiyu Huang, Hongda Tokuraku, Kiyotaka St Johnston, Daniel Mallat, Ziad Li, Xuan Nature Article Myocardial infarction (MI) is a major cause of premature adult death. Compromised cardiac function after MI leads to chronic heart failure with systemic health complications and high mortality rate(1). Effective therapeutic strategies are highly needed to improve the recovery of cardiac function after MI. More specifically, there is a major unmet need for a new class of drugs that improve cardiomyocyte contractility, because currently available inotropic therapies have been associated with high morbidity and mortality in patients with systolic heart failure(2,3), or have shown a very modest risk reduction(4). Microtubule detyrosination is emerging as an important mechanism of regulation of cardiomyocyte contractility(5). Here, we show that deficiency of Microtubule-Affinity Regulating Kinase 4 (MARK4) substantially limits the reduction of left ventricular ejection fraction (LVEF) after acute MI in mice, without affecting infarct size or cardiac remodeling. Mechanistically, we provide evidence that MARK4 regulates cardiomyocyte contractility through promoting microtubule-associated protein 4 (MAP4) phosphorylation, thereby facilitating the access of Vasohibin 2 (VASH2), a tubulin carboxypeptidase (TCP), to microtubules for α-tubulin detyrosination. Our results show how cardiomyocyte microtubule detyrosination is finely tuned by MARK4 to regulate cardiac inotropy, and identify MARK4 as a promising druggable therapeutic target for improving cardiac function after MI. 2021-06-01 2021-05-26 /pmc/articles/PMC7612144/ /pubmed/34040253 http://dx.doi.org/10.1038/s41586-021-03573-5 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/) International license. |
spellingShingle | Article Yu, Xian Chen, Xiao Amrute-Nayak, Mamta Allgeyer, Edward Zhao, Aite Chenoweth, Hannah Clement, Marc Harrison, James Doreth, Christian Sirinakis, George Krieg, Thomas Zhou, Huiyu Huang, Hongda Tokuraku, Kiyotaka St Johnston, Daniel Mallat, Ziad Li, Xuan MARK4 controls ischaemic heart failure through microtubule detyrosination |
title | MARK4 controls ischaemic heart failure through microtubule detyrosination |
title_full | MARK4 controls ischaemic heart failure through microtubule detyrosination |
title_fullStr | MARK4 controls ischaemic heart failure through microtubule detyrosination |
title_full_unstemmed | MARK4 controls ischaemic heart failure through microtubule detyrosination |
title_short | MARK4 controls ischaemic heart failure through microtubule detyrosination |
title_sort | mark4 controls ischaemic heart failure through microtubule detyrosination |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612144/ https://www.ncbi.nlm.nih.gov/pubmed/34040253 http://dx.doi.org/10.1038/s41586-021-03573-5 |
work_keys_str_mv | AT yuxian mark4controlsischaemicheartfailurethroughmicrotubuledetyrosination AT chenxiao mark4controlsischaemicheartfailurethroughmicrotubuledetyrosination AT amrutenayakmamta mark4controlsischaemicheartfailurethroughmicrotubuledetyrosination AT allgeyeredward mark4controlsischaemicheartfailurethroughmicrotubuledetyrosination AT zhaoaite mark4controlsischaemicheartfailurethroughmicrotubuledetyrosination AT chenowethhannah mark4controlsischaemicheartfailurethroughmicrotubuledetyrosination AT clementmarc mark4controlsischaemicheartfailurethroughmicrotubuledetyrosination AT harrisonjames mark4controlsischaemicheartfailurethroughmicrotubuledetyrosination AT dorethchristian mark4controlsischaemicheartfailurethroughmicrotubuledetyrosination AT sirinakisgeorge mark4controlsischaemicheartfailurethroughmicrotubuledetyrosination AT kriegthomas mark4controlsischaemicheartfailurethroughmicrotubuledetyrosination AT zhouhuiyu mark4controlsischaemicheartfailurethroughmicrotubuledetyrosination AT huanghongda mark4controlsischaemicheartfailurethroughmicrotubuledetyrosination AT tokurakukiyotaka mark4controlsischaemicheartfailurethroughmicrotubuledetyrosination AT stjohnstondaniel mark4controlsischaemicheartfailurethroughmicrotubuledetyrosination AT mallatziad mark4controlsischaemicheartfailurethroughmicrotubuledetyrosination AT lixuan mark4controlsischaemicheartfailurethroughmicrotubuledetyrosination |