Cargando…
Pleiotropy robust methods for multivariable Mendelian randomization
Mendelian randomization is a powerful tool for inferring the presence, or otherwise, of causal effects from observational data. However, the nature of genetic variants is such that pleiotropy remains a barrier to valid causal effect estimation. There are many options in the literature for pleiotropy...
Autores principales: | Grant, Andrew J., Burgess, Stephen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612169/ https://www.ncbi.nlm.nih.gov/pubmed/34342032 http://dx.doi.org/10.1002/sim.9156 |
Ejemplares similares
-
Extending the MR‐Egger method for multivariable Mendelian randomization to correct for both measured and unmeasured pleiotropy
por: Rees, Jessica M. B., et al.
Publicado: (2017) -
Power, measurement error, and pleiotropy robustness in twin-design extensions to Mendelian Randomization
por: Castro-de-Araujo, Luis FS, et al.
Publicado: (2023) -
Robust Mendelian randomization in the presence of residual population stratification, batch effects and horizontal pleiotropy
por: Cinelli, Carlos, et al.
Publicado: (2022) -
Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption
por: Hartwig, Fernando Pires, et al.
Publicado: (2017) -
A multivariable Mendelian randomization to appraise the pleiotropy between intelligence, education, and bipolar disorder in relation to schizophrenia
por: Adams, Charleen D.
Publicado: (2020)