Cargando…
Using generalized linear models to implement g-estimation for survival data with time-varying confounding
Using data from observational studies to estimate the causal effect of a time-varying exposure, repeatedly measured over time, on an outcome of interest requires careful adjustment for confounding. Standard regression adjustment for observed time-varying confounders is unsuitable, as it can eliminat...
Autores principales: | Seaman, Shaun R., Keogh, Ruth H., Dukes, Oliver, Vansteelandt, Stijn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612171/ https://www.ncbi.nlm.nih.gov/pubmed/33942919 http://dx.doi.org/10.1002/sim.8997 |
Ejemplares similares
-
Adjusting for time‐varying confounders in survival analysis using structural nested cumulative survival time models
por: Seaman, Shaun, et al.
Publicado: (2019) -
Causal inference in survival analysis using longitudinal observational data: Sequential trials and marginal structural models
por: Keogh, Ruth H., et al.
Publicado: (2023) -
Mediation analysis of time‐to‐event endpoints accounting for repeatedly measured mediators subject to time‐varying confounding
por: Vansteelandt, Stijn, et al.
Publicado: (2019) -
Analysis of Longitudinal Studies With Repeated Outcome Measures: Adjusting for Time-Dependent Confounding Using Conventional Methods
por: Keogh, Ruth H, et al.
Publicado: (2018) -
Simulating longitudinal data from marginal structural models using the additive hazard model [Image: see text]
por: Keogh, Ruth H., et al.
Publicado: (2021)