Cargando…

Inference under unequal probability sampling with the Bayesian exponentially tilted empirical likelihood

Fully Bayesian inference in the presence of unequal probability sampling requires stronger structural assumptions on the data-generating distribution than frequentist semiparametric methods, but offers the potential for improved small-sample inference and convenient evidence synthesis. We demonstrat...

Descripción completa

Detalles Bibliográficos
Autores principales: Yiu, A., Goudie, R. J. B., Tom, B. D. M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612173/
https://www.ncbi.nlm.nih.gov/pubmed/34992304
http://dx.doi.org/10.1093/biomet/asaa028
_version_ 1783605343028248576
author Yiu, A.
Goudie, R. J. B.
Tom, B. D. M.
author_facet Yiu, A.
Goudie, R. J. B.
Tom, B. D. M.
author_sort Yiu, A.
collection PubMed
description Fully Bayesian inference in the presence of unequal probability sampling requires stronger structural assumptions on the data-generating distribution than frequentist semiparametric methods, but offers the potential for improved small-sample inference and convenient evidence synthesis. We demonstrate that the Bayesian exponentially tilted empirical likelihood can be used to combine the practical benefits of Bayesian inference with the robustness and attractive large-sample properties of frequentist approaches. Estimators defined as the solutions to unbiased estimating equations can be used to define a semiparametric model through the set of corresponding moment constraints. We prove Bernstein–von Mises theorems which show that the posterior constructed from the resulting exponentially tilted empirical likelihood becomes approximately normal, centred at the chosen estimator with matching asymptotic variance; thus, the posterior has properties analogous to those of the estimator, such as double robustness, and the frequentist coverage of any credible set will be approximately equal to its credibility. The proposed method can be used to obtain modified versions of existing estimators with improved properties, such as guarantees that the estimator lies within the parameter space. Unlike existing Bayesian proposals, our method does not prescribe a particular choice of prior or require posterior variance correction, and simulations suggest that it provides superior performance in terms of frequentist criteria.
format Online
Article
Text
id pubmed-7612173
institution National Center for Biotechnology Information
language English
publishDate 2020
record_format MEDLINE/PubMed
spelling pubmed-76121732022-01-05 Inference under unequal probability sampling with the Bayesian exponentially tilted empirical likelihood Yiu, A. Goudie, R. J. B. Tom, B. D. M. Biometrika Article Fully Bayesian inference in the presence of unequal probability sampling requires stronger structural assumptions on the data-generating distribution than frequentist semiparametric methods, but offers the potential for improved small-sample inference and convenient evidence synthesis. We demonstrate that the Bayesian exponentially tilted empirical likelihood can be used to combine the practical benefits of Bayesian inference with the robustness and attractive large-sample properties of frequentist approaches. Estimators defined as the solutions to unbiased estimating equations can be used to define a semiparametric model through the set of corresponding moment constraints. We prove Bernstein–von Mises theorems which show that the posterior constructed from the resulting exponentially tilted empirical likelihood becomes approximately normal, centred at the chosen estimator with matching asymptotic variance; thus, the posterior has properties analogous to those of the estimator, such as double robustness, and the frequentist coverage of any credible set will be approximately equal to its credibility. The proposed method can be used to obtain modified versions of existing estimators with improved properties, such as guarantees that the estimator lies within the parameter space. Unlike existing Bayesian proposals, our method does not prescribe a particular choice of prior or require posterior variance correction, and simulations suggest that it provides superior performance in terms of frequentist criteria. 2020-12 /pmc/articles/PMC7612173/ /pubmed/34992304 http://dx.doi.org/10.1093/biomet/asaa028 Text en https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Article
Yiu, A.
Goudie, R. J. B.
Tom, B. D. M.
Inference under unequal probability sampling with the Bayesian exponentially tilted empirical likelihood
title Inference under unequal probability sampling with the Bayesian exponentially tilted empirical likelihood
title_full Inference under unequal probability sampling with the Bayesian exponentially tilted empirical likelihood
title_fullStr Inference under unequal probability sampling with the Bayesian exponentially tilted empirical likelihood
title_full_unstemmed Inference under unequal probability sampling with the Bayesian exponentially tilted empirical likelihood
title_short Inference under unequal probability sampling with the Bayesian exponentially tilted empirical likelihood
title_sort inference under unequal probability sampling with the bayesian exponentially tilted empirical likelihood
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612173/
https://www.ncbi.nlm.nih.gov/pubmed/34992304
http://dx.doi.org/10.1093/biomet/asaa028
work_keys_str_mv AT yiua inferenceunderunequalprobabilitysamplingwiththebayesianexponentiallytiltedempiricallikelihood
AT goudierjb inferenceunderunequalprobabilitysamplingwiththebayesianexponentiallytiltedempiricallikelihood
AT tombdm inferenceunderunequalprobabilitysamplingwiththebayesianexponentiallytiltedempiricallikelihood