Cargando…
Simulating longitudinal data from marginal structural models using the additive hazard model [Image: see text]
Observational longitudinal data on treatments and covariates are increasingly used to investigate treatment effects, but are often subject to time-dependent confounding. Marginal structural models (MSMs), estimated using inverse probability of treatment weighting or the g-formula, are popular for ha...
Autores principales: | Keogh, Ruth H., Seaman, Shaun R., Gran, Jon Michael, Vansteelandt, Stijn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612178/ https://www.ncbi.nlm.nih.gov/pubmed/33983641 http://dx.doi.org/10.1002/bimj.202000040 |
Ejemplares similares
-
Causal inference in survival analysis using longitudinal observational data: Sequential trials and marginal structural models
por: Keogh, Ruth H., et al.
Publicado: (2023) -
Adjusting for time‐varying confounders in survival analysis using structural nested cumulative survival time models
por: Seaman, Shaun, et al.
Publicado: (2019) -
Using generalized linear models to implement g-estimation for survival data with time-varying confounding
por: Seaman, Shaun R., et al.
Publicado: (2021) -
[Formula: see text] rule, [Formula: see text] and [Formula: see text] in [Formula: see text] and [Formula: see text] models with FCNC quark couplings
por: Buras, Andrzej J., et al.
Publicado: (2014) -
I[Image: see text]B, NF-[Image: see text]B Regulation Model: Simulation Analysis of Small Number of Molecules
por: Sarkar, Anamika, et al.
Publicado: (2008)