Cargando…

Missing at random: a stochastic process perspective

We offer a natural and extensible measure-theoretic treatment of missingness at random. Within the standard missing-data framework, we give a novel characterization of the observed data as a stopping-set sigma algebra. We demonstrate that the usual missingness-at-random conditions are equivalent to...

Descripción completa

Detalles Bibliográficos
Autores principales: Farewell, D. M., Daniel, R. M., Seaman, S. R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612310/
https://www.ncbi.nlm.nih.gov/pubmed/35115732
http://dx.doi.org/10.1093/biomet/asab002
_version_ 1783605355247304704
author Farewell, D. M.
Daniel, R. M.
Seaman, S. R.
author_facet Farewell, D. M.
Daniel, R. M.
Seaman, S. R.
author_sort Farewell, D. M.
collection PubMed
description We offer a natural and extensible measure-theoretic treatment of missingness at random. Within the standard missing-data framework, we give a novel characterization of the observed data as a stopping-set sigma algebra. We demonstrate that the usual missingness-at-random conditions are equivalent to requiring particular stochastic processes to be adapted to a set-indexed filtration. These measurability conditions ensure the usual factorization of likelihood ratios. We illustrate how the theory can be extended easily to incorporate explanatory variables, to describe longitudinal data in continuous time, and to admit more general coarsening of observations.
format Online
Article
Text
id pubmed-7612310
institution National Center for Biotechnology Information
language English
publishDate 2022
record_format MEDLINE/PubMed
spelling pubmed-76123102022-02-02 Missing at random: a stochastic process perspective Farewell, D. M. Daniel, R. M. Seaman, S. R. Biometrika Article We offer a natural and extensible measure-theoretic treatment of missingness at random. Within the standard missing-data framework, we give a novel characterization of the observed data as a stopping-set sigma algebra. We demonstrate that the usual missingness-at-random conditions are equivalent to requiring particular stochastic processes to be adapted to a set-indexed filtration. These measurability conditions ensure the usual factorization of likelihood ratios. We illustrate how the theory can be extended easily to incorporate explanatory variables, to describe longitudinal data in continuous time, and to admit more general coarsening of observations. 2022-02-01 2021-02-04 /pmc/articles/PMC7612310/ /pubmed/35115732 http://dx.doi.org/10.1093/biomet/asab002 Text en https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative CommonsAttribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Article
Farewell, D. M.
Daniel, R. M.
Seaman, S. R.
Missing at random: a stochastic process perspective
title Missing at random: a stochastic process perspective
title_full Missing at random: a stochastic process perspective
title_fullStr Missing at random: a stochastic process perspective
title_full_unstemmed Missing at random: a stochastic process perspective
title_short Missing at random: a stochastic process perspective
title_sort missing at random: a stochastic process perspective
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612310/
https://www.ncbi.nlm.nih.gov/pubmed/35115732
http://dx.doi.org/10.1093/biomet/asab002
work_keys_str_mv AT farewelldm missingatrandomastochasticprocessperspective
AT danielrm missingatrandomastochasticprocessperspective
AT seamansr missingatrandomastochasticprocessperspective