Cargando…
Missing at random: a stochastic process perspective
We offer a natural and extensible measure-theoretic treatment of missingness at random. Within the standard missing-data framework, we give a novel characterization of the observed data as a stopping-set sigma algebra. We demonstrate that the usual missingness-at-random conditions are equivalent to...
Autores principales: | Farewell, D. M., Daniel, R. M., Seaman, S. R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612310/ https://www.ncbi.nlm.nih.gov/pubmed/35115732 http://dx.doi.org/10.1093/biomet/asab002 |
Ejemplares similares
-
Linear Increments with Non‐monotone Missing Data and Measurement Error
por: Seaman, Shaun R., et al.
Publicado: (2016) -
Estimation of stochastic processes with missing observations
por: Moklyachuk, Mikhail
Publicado: (2019) -
Using linear increment models for the imputation of missing composite outcomes in randomized trials
por: O’Keeffe, Aidan G, et al.
Publicado: (2011) -
Multiple Imputation of Missing Composite Outcomes in Longitudinal Data
por: O’Keeffe, Aidan G., et al.
Publicado: (2016) -
Probability, random variables, and stochastic processes
por: Papoulis, Athanasios, 1921-
Publicado: (1965)