Cargando…
Stochastic approximation cut algorithm for inference in modularized Bayesian models
Bayesian modelling enables us to accommodate complex forms of data and make a comprehensive inference, but the effect of partial misspecification of the model is a concern. One approach in this setting is to modularize the model and prevent feedback from suspect modules, using a cut model. After obs...
Autores principales: | Liu, Yang, Goudie, Robert J. B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612314/ https://www.ncbi.nlm.nih.gov/pubmed/35125678 http://dx.doi.org/10.1007/s11222-021-10070-2 |
Ejemplares similares
-
“Exact” and Approximate Methods for Bayesian Inference: Stochastic Volatility Case Study
por: Shapovalova, Yuliya
Publicado: (2021) -
Generalized Geographically Weighted Regression Model within a Modularized Bayesian Framework*
por: Liu, Yang, et al.
Publicado: (2023) -
Approximate Bayesian Inference
por: Alquier, Pierre
Publicado: (2020) -
Approximate Bayesian inference in semi-mechanistic models
por: Aderhold, Andrej, et al.
Publicado: (2016) -
Approximate Bayesian computation schemes for parameter inference of discrete stochastic models using simulated likelihood density
por: Wu, Qianqian, et al.
Publicado: (2014)