Cargando…
Total Synthesis and Late-Stage C–H Oxidations of ent-Trachylobane Natural Products
Herein, we present our studies to construct seven ent-trachylobane diterpenoids by employing a bioinspired two-phase synthetic strategy. The first phase provided enantioselective and scalable access to five ent-trachylobanes, of which methyl ent-trachyloban-19-oate was produced on a 300 mg scale. Du...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612322/ https://www.ncbi.nlm.nih.gov/pubmed/34762359 http://dx.doi.org/10.1002/anie.202113829 |
Sumario: | Herein, we present our studies to construct seven ent-trachylobane diterpenoids by employing a bioinspired two-phase synthetic strategy. The first phase provided enantioselective and scalable access to five ent-trachylobanes, of which methyl ent-trachyloban-19-oate was produced on a 300 mg scale. During the second phase, chemical C–H oxidation methods were employed to enable selective conversion to two naturally occurring higher functionalized ent-trachylobanes. The formation of regioisomeric analogs, which are currently inaccessible via enzymatic methods, reveals the potential as well as limitations of established chemical C–H oxidation protocols for complex molecule synthesis. |
---|