Cargando…

Structural basis of meiotic chromosome synaptic elongation through hierarchical fibrous assembly of SYCE2-TEX12

The synaptonemal complex (SC) is a supramolecular protein assembly that mediates synapsis between homologous chromosomes during meiosis. SC elongation along the chromosome length (up to 24 μm) depends on its midline α-fibrous component SYCE2-TEX12. Here, we report X-ray crystal structures of human S...

Descripción completa

Detalles Bibliográficos
Autores principales: Dunce, James M., Salmon, Lucy J., Davies, Owen R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612376/
https://www.ncbi.nlm.nih.gov/pubmed/34373646
http://dx.doi.org/10.1038/s41594-021-00636-z
Descripción
Sumario:The synaptonemal complex (SC) is a supramolecular protein assembly that mediates synapsis between homologous chromosomes during meiosis. SC elongation along the chromosome length (up to 24 μm) depends on its midline α-fibrous component SYCE2-TEX12. Here, we report X-ray crystal structures of human SYCE2-TEX12 as an individual building-block and upon assembly within a fibrous lattice. We combine these structures with mutagenesis, biophysics and electron microscopy to reveal the hierarchical mechanism of SYCE2-TEX12 fibre assembly. SYCE2-TEX12’s building-blocks are 2:2 coiled-coils which dimerise into 4:4 hetero-oligomers and interact end-to-end and laterally to form 10-nm fibres, which intertwine within 40-nm bundled micrometre-long fibres that define the SC’s midline structure. This assembly mechanism bears striking resemblance with intermediate filament proteins vimentin, lamin and keratin. Thus, SYCE2-TEX12 exhibits behaviour typical of cytoskeletal proteins to provide an α-fibrous SC backbone that structurally underpins synaptic elongation along meiotic chromosomes.