Cargando…
Leveraging the potential of machine learning for assessing vascular ageing: state-of-the-art and future research
Vascular ageing biomarkers have been found to be predictive of cardiovascular risk independently of classical risk factors, yet are not widely used in clinical practice. In this review, we present two basic approaches for using machine learning (ML) to assess vascular age: parameter estimation and r...
Autores principales: | Bikia, Vasiliki, Fong, Terence, Climie, Rachel E, Bruno, Rosa-Maria, Hametner, Bernhard, Mayer, Christopher, Terentes-Printzios, Dimitrios, Charlton, Peter H |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612526/ https://www.ncbi.nlm.nih.gov/pubmed/35316972 http://dx.doi.org/10.1093/ehjdh/ztab089 |
Ejemplares similares
-
Vascular ageing: moving from bench towards bedside
por: Climie, Rachel E., et al.
Publicado: (2023) -
Assessing hemodynamics from the photoplethysmogram to gain insights into vascular age: a review from VascAgeNet
por: Charlton, Peter H., et al.
Publicado: (2022) -
Pathophysiology of Circulating Biomarkers and Relationship With Vascular Aging: A Review of the Literature From VascAgeNet Group on Circulating Biomarkers, European Cooperation in Science and Technology Action 18216
por: Gopcevic, Kristina R., et al.
Publicado: (2021) -
Editorial: Widely used and novel approaches of the measurement of arterial stiffness and central hemodynamic parameters: Is there a consensus on the horizon?
por: Nemcsik, János, et al.
Publicado: (2023) -
Arterial pulse wave modeling and analysis for vascular-age studies: a review from VascAgeNet
por: Alastruey, Jordi, et al.
Publicado: (2023)