Cargando…

Alternative stable states of the forest mycobiome are maintained through positive feedbacks

Most trees on Earth forms a symbiosis with either arbuscular mycorrhizal or ectomycorrhizal fungi. By forming common mycorrhizal networks, actively modifying the soil environment, and other ecological mechanisms - these contrasting symbioses may generate positive feedbacks that favor their own mycor...

Descripción completa

Detalles Bibliográficos
Autores principales: Averill, Colin, Fortunel, Claire, Maynard, Daniel S., van den Hoogen, Johan, Dietze, Michael C., Bhatnagar, Jennifer M., Crowther, Thomas W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612595/
https://www.ncbi.nlm.nih.gov/pubmed/35210576
http://dx.doi.org/10.1038/s41559-022-01663-9
Descripción
Sumario:Most trees on Earth forms a symbiosis with either arbuscular mycorrhizal or ectomycorrhizal fungi. By forming common mycorrhizal networks, actively modifying the soil environment, and other ecological mechanisms - these contrasting symbioses may generate positive feedbacks that favor their own mycorrhizal strategy (i.e. the con-mycorrhizal strategy) at the expense of the alternative strategy. Positive con-mycorrhizal feedbacks set the stage for alternative stable states of forests and their fungi, where the presence of different forest mycorrhizal strategies is determined not only by external environmental conditions but also mycorrhiza-mediated feedbacks embedded within the forest ecosystem. Here we test this hypothesis using thousands of U.S. forest inventory sites to show arbuscular and ectomycorrhizal tree recruitment and survival exhibit positive con-mycorrhizal density dependence. Data-driven simulations show these positive feedbacks are sufficient in magnitude to generate and maintain alternative stable states of the forest mycobiome. Given the links between forest mycorrhizal strategy and carbon sequestration potential, the presence of mycorrhizal-mediated alternative stable states affects how we forecast forest composition, carbon sequestration and terrestrial climate feedbacks.