Cargando…
An accurate, robust, and efficient finite element framework with applications to anisotropic, nearly and fully incompressible elasticity
Fiber-reinforced soft biological tissues are typically modeled as hyperelastic, anisotropic, and nearly incompressible materials. To enforce incompressibility a multiplicative split of the deformation gradient into a volumetric and an isochoric part is a very common approach. However, the finite ele...
Autores principales: | Karabelas, Elias, Gsell, Matthias A.F., Haase, Gundolf, Plank, Gernot, Augustin, Christoph M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612621/ https://www.ncbi.nlm.nih.gov/pubmed/35432634 http://dx.doi.org/10.1016/j.cma.2022.114887 |
Ejemplares similares
-
Versatile stabilized finite element formulations for nearly and fully incompressible solid mechanics
por: Karabelas, Elias, et al.
Publicado: (2019) -
A displacement-based finite element formulation for incompressible and nearly-incompressible cardiac mechanics
por: Hadjicharalambous, Myrianthi, et al.
Publicado: (2014) -
Automating image-based mesh generation and manipulation tasks in cardiac modeling workflows using Meshtool
por: Neic, Aurel, et al.
Publicado: (2020) -
Assessment of wall stresses and mechanical heart power in the left ventricle: Finite element modeling versus Laplace analysis
por: Gsell, Matthias A. F., et al.
Publicado: (2018) -
A computationally efficient physiologically comprehensive 3D–0D closed-loop model of the heart and circulation
por: Augustin, Christoph M., et al.
Publicado: (2021)