Cargando…

AAV Induced Expression of Human Rod and Cone Opsin in Bipolar Cells of a Mouse Model of Retinal Degeneration

Vision loss caused by inherited retinal degeneration affects millions of people worldwide, and clinical trials involving gene supplementation strategies are ongoing for select forms of the disease. When early therapeutic intervention is not possible and patients suffer complete loss of their photore...

Descripción completa

Detalles Bibliográficos
Autores principales: McClements, Michelle E., Staurenghi, Federica, Visel, Meike, Flannery, John G., MacLaren, Robert E., Cehajic-Kapetanovic, Jasmina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612646/
https://www.ncbi.nlm.nih.gov/pubmed/35465048
http://dx.doi.org/10.1155/2021/4014797
Descripción
Sumario:Vision loss caused by inherited retinal degeneration affects millions of people worldwide, and clinical trials involving gene supplementation strategies are ongoing for select forms of the disease. When early therapeutic intervention is not possible and patients suffer complete loss of their photoreceptor cells, there is an opportunity for vision restoration techniques, including optogenetic therapy. This therapy provides expression of light-sensitive molecules to surviving cell types of the retina, enabling light perception through residual neuronal pathways. To this end, the bipolar cells make an obvious optogenetic target to enable upstream processing of visual signal in the retina. However, while AAV transduction of the bipolar cells has been described, the expression of human opsins in these cell types within a model of retinal degeneration (rd1) has been less successful. In this study, we have expanded the optogenetic toolkit and shown successful expression of human rhodopsin driven by an ON-bipolar cell promoter (Grm6) in the rd1 mouse model using modified AAV capsids (AAV2.4YF, AAV8.BP2, and AAV2.7m8) delivered via intraocular injection. We also show the first presentation of ectopic expression of human cone opsin in the bipolar cells of rd1 mice. These data provide evidence of an expansion of the optogenetic toolkit with the potential to restore useful visual function, setting the stage for future trials in human patients.