Cargando…

Multiple Ways to Keep FFAT Under Control!

Peroxisomes and the ER are closely inter-connected organelles, which collaborate in the metabolism of lipids. In a recent research paper in the Journal of Cell Biology, we describe a novel mechanism by which peroxisome-ER membrane contact sites are regulated, via phosphorylation of the peroxisomal p...

Descripción completa

Detalles Bibliográficos
Autores principales: Kors, Suzan, Schrader, Michael, Costello, Joseph L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612758/
https://www.ncbi.nlm.nih.gov/pubmed/35611050
http://dx.doi.org/10.1177/25152564221101219
Descripción
Sumario:Peroxisomes and the ER are closely inter-connected organelles, which collaborate in the metabolism of lipids. In a recent research paper in the Journal of Cell Biology, we describe a novel mechanism by which peroxisome-ER membrane contact sites are regulated, via phosphorylation of the peroxisomal protein ACBD5. We found that the interaction between ACBD5 and the ER protein VAPB, which we have previously shown to form a tether complex at peroxisome-ER contacts, is controlled by phosphorylation of ACBD5 at two different sites of its FFAT motif – the VAPB binding site. We also identify the kinase GSK3-β as being responsible for direct phosphorylation of ACBD5 to negatively regulate interaction with VAPB, leading to reduced peroxisome-ER contacts. In this article we provide additional insights into how this work, in combination with other studies on phosphorylation of VAP interactors, suggests a complex system of both positive and negative regulation of the FFAT motif via phosphorylation.