Cargando…
Memory-Efficient Training for Fully Unrolled Deep Learned PET Image Reconstruction with Iteration-Dependent Targets
We propose a new version of the forward-backward splitting expectation-maximisation network (FBSEM-Net) along with a new memory-efficient training method enabling the training of fully unrolled implementations of 3D FBSEM-Net. FBSEM-Net unfolds the maximum a posteriori expectation-maximisation algor...
Autores principales: | Corda-D’Incan, Guillaume, Schnabel, Julia A., Reader, Andrew J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612803/ https://www.ncbi.nlm.nih.gov/pubmed/35664091 http://dx.doi.org/10.1109/TRPMS.2021.3101947 |
Ejemplares similares
-
Unrolled-DOT: an interpretable deep network for diffuse optical tomography
por: Zhao, Yongyi, et al.
Publicado: (2023) -
SALSA-Net: Explainable Deep Unrolling Networks for Compressed Sensing
por: Song, Heping, et al.
Publicado: (2023) -
Federated End-to-End Unrolled Models for Magnetic Resonance Image Reconstruction
por: Levac, Brett R., et al.
Publicado: (2023) -
Unrolling time: Christiaan Huygens and the mathematization of nature
por: Yoder-Gerstmeyer, Joella
Publicado: (1988) -
CT of the chest with model-based, fully iterative reconstruction: comparison with adaptive statistical iterative reconstruction
por: Ichikawa, Yasutaka, et al.
Publicado: (2013)