Cargando…
A multi-site, multi-participant magnetoencephalography resting-state dataset to study dementia: The BioFIND dataset
Early detection of Alzheimer’s Disease (AD) is vital to reduce the burden of dementia and for developing effective treatments. Neuroimaging can detect early brain changes, such as hippocampal atrophy in Mild Cognitive Impairment (MCI), a prodromal state of AD. However, selecting the most informative...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7613066/ https://www.ncbi.nlm.nih.gov/pubmed/35660461 http://dx.doi.org/10.1016/j.neuroimage.2022.119344 |
_version_ | 1783605441539866624 |
---|---|
author | Vaghari, Delshad Bruna, Ricardo Hughes, Laura E. Nesbitt, David Tibon, Roni Rowe, James B. Maestu, Fernando Henson, Richard N. |
author_facet | Vaghari, Delshad Bruna, Ricardo Hughes, Laura E. Nesbitt, David Tibon, Roni Rowe, James B. Maestu, Fernando Henson, Richard N. |
author_sort | Vaghari, Delshad |
collection | PubMed |
description | Early detection of Alzheimer’s Disease (AD) is vital to reduce the burden of dementia and for developing effective treatments. Neuroimaging can detect early brain changes, such as hippocampal atrophy in Mild Cognitive Impairment (MCI), a prodromal state of AD. However, selecting the most informative imaging features by machine-learning requires many cases. While large publically-available datasets of people with dementia or prodromal disease exist for Magnetic Resonance Imaging (MRI), comparable datasets are missing for Magnetoencephalography (MEG). MEG offers advantages in its millisecond resolution, revealing physiological changes in brain oscillations or connectivity before structural changes are evident with MRI. We introduce a MEG dataset with 324 individuals: patients with MCI and healthy controls. Their brain activity was recorded while resting with eyes closed, using a 306-channel MEG scanner at one of two sites (Madrid or Cambridge), enabling tests of generalization across sites. A T1-weighted MRI is provided to assist source localisation. The MEG and MRI data are formatted according to international BIDS standards and analysed freely on the DPUK platform (https://portal.dementiasplatform.uk/Apply). Here, we describe this dataset in detail, report some example (benchmark) analyses, and consider its limitations and future directions. |
format | Online Article Text |
id | pubmed-7613066 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
record_format | MEDLINE/PubMed |
spelling | pubmed-76130662022-07-17 A multi-site, multi-participant magnetoencephalography resting-state dataset to study dementia: The BioFIND dataset Vaghari, Delshad Bruna, Ricardo Hughes, Laura E. Nesbitt, David Tibon, Roni Rowe, James B. Maestu, Fernando Henson, Richard N. Neuroimage Article Early detection of Alzheimer’s Disease (AD) is vital to reduce the burden of dementia and for developing effective treatments. Neuroimaging can detect early brain changes, such as hippocampal atrophy in Mild Cognitive Impairment (MCI), a prodromal state of AD. However, selecting the most informative imaging features by machine-learning requires many cases. While large publically-available datasets of people with dementia or prodromal disease exist for Magnetic Resonance Imaging (MRI), comparable datasets are missing for Magnetoencephalography (MEG). MEG offers advantages in its millisecond resolution, revealing physiological changes in brain oscillations or connectivity before structural changes are evident with MRI. We introduce a MEG dataset with 324 individuals: patients with MCI and healthy controls. Their brain activity was recorded while resting with eyes closed, using a 306-channel MEG scanner at one of two sites (Madrid or Cambridge), enabling tests of generalization across sites. A T1-weighted MRI is provided to assist source localisation. The MEG and MRI data are formatted according to international BIDS standards and analysed freely on the DPUK platform (https://portal.dementiasplatform.uk/Apply). Here, we describe this dataset in detail, report some example (benchmark) analyses, and consider its limitations and future directions. 2022-05-31 2022-05-31 /pmc/articles/PMC7613066/ /pubmed/35660461 http://dx.doi.org/10.1016/j.neuroimage.2022.119344 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/) International license. |
spellingShingle | Article Vaghari, Delshad Bruna, Ricardo Hughes, Laura E. Nesbitt, David Tibon, Roni Rowe, James B. Maestu, Fernando Henson, Richard N. A multi-site, multi-participant magnetoencephalography resting-state dataset to study dementia: The BioFIND dataset |
title | A multi-site, multi-participant magnetoencephalography resting-state dataset to study dementia: The BioFIND dataset |
title_full | A multi-site, multi-participant magnetoencephalography resting-state dataset to study dementia: The BioFIND dataset |
title_fullStr | A multi-site, multi-participant magnetoencephalography resting-state dataset to study dementia: The BioFIND dataset |
title_full_unstemmed | A multi-site, multi-participant magnetoencephalography resting-state dataset to study dementia: The BioFIND dataset |
title_short | A multi-site, multi-participant magnetoencephalography resting-state dataset to study dementia: The BioFIND dataset |
title_sort | multi-site, multi-participant magnetoencephalography resting-state dataset to study dementia: the biofind dataset |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7613066/ https://www.ncbi.nlm.nih.gov/pubmed/35660461 http://dx.doi.org/10.1016/j.neuroimage.2022.119344 |
work_keys_str_mv | AT vagharidelshad amultisitemultiparticipantmagnetoencephalographyrestingstatedatasettostudydementiathebiofinddataset AT brunaricardo amultisitemultiparticipantmagnetoencephalographyrestingstatedatasettostudydementiathebiofinddataset AT hugheslaurae amultisitemultiparticipantmagnetoencephalographyrestingstatedatasettostudydementiathebiofinddataset AT nesbittdavid amultisitemultiparticipantmagnetoencephalographyrestingstatedatasettostudydementiathebiofinddataset AT tibonroni amultisitemultiparticipantmagnetoencephalographyrestingstatedatasettostudydementiathebiofinddataset AT rowejamesb amultisitemultiparticipantmagnetoencephalographyrestingstatedatasettostudydementiathebiofinddataset AT maestufernando amultisitemultiparticipantmagnetoencephalographyrestingstatedatasettostudydementiathebiofinddataset AT hensonrichardn amultisitemultiparticipantmagnetoencephalographyrestingstatedatasettostudydementiathebiofinddataset AT vagharidelshad multisitemultiparticipantmagnetoencephalographyrestingstatedatasettostudydementiathebiofinddataset AT brunaricardo multisitemultiparticipantmagnetoencephalographyrestingstatedatasettostudydementiathebiofinddataset AT hugheslaurae multisitemultiparticipantmagnetoencephalographyrestingstatedatasettostudydementiathebiofinddataset AT nesbittdavid multisitemultiparticipantmagnetoencephalographyrestingstatedatasettostudydementiathebiofinddataset AT tibonroni multisitemultiparticipantmagnetoencephalographyrestingstatedatasettostudydementiathebiofinddataset AT rowejamesb multisitemultiparticipantmagnetoencephalographyrestingstatedatasettostudydementiathebiofinddataset AT maestufernando multisitemultiparticipantmagnetoencephalographyrestingstatedatasettostudydementiathebiofinddataset AT hensonrichardn multisitemultiparticipantmagnetoencephalographyrestingstatedatasettostudydementiathebiofinddataset |