Cargando…

A multi-site, multi-participant magnetoencephalography resting-state dataset to study dementia: The BioFIND dataset

Early detection of Alzheimer’s Disease (AD) is vital to reduce the burden of dementia and for developing effective treatments. Neuroimaging can detect early brain changes, such as hippocampal atrophy in Mild Cognitive Impairment (MCI), a prodromal state of AD. However, selecting the most informative...

Descripción completa

Detalles Bibliográficos
Autores principales: Vaghari, Delshad, Bruna, Ricardo, Hughes, Laura E., Nesbitt, David, Tibon, Roni, Rowe, James B., Maestu, Fernando, Henson, Richard N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7613066/
https://www.ncbi.nlm.nih.gov/pubmed/35660461
http://dx.doi.org/10.1016/j.neuroimage.2022.119344
_version_ 1783605441539866624
author Vaghari, Delshad
Bruna, Ricardo
Hughes, Laura E.
Nesbitt, David
Tibon, Roni
Rowe, James B.
Maestu, Fernando
Henson, Richard N.
author_facet Vaghari, Delshad
Bruna, Ricardo
Hughes, Laura E.
Nesbitt, David
Tibon, Roni
Rowe, James B.
Maestu, Fernando
Henson, Richard N.
author_sort Vaghari, Delshad
collection PubMed
description Early detection of Alzheimer’s Disease (AD) is vital to reduce the burden of dementia and for developing effective treatments. Neuroimaging can detect early brain changes, such as hippocampal atrophy in Mild Cognitive Impairment (MCI), a prodromal state of AD. However, selecting the most informative imaging features by machine-learning requires many cases. While large publically-available datasets of people with dementia or prodromal disease exist for Magnetic Resonance Imaging (MRI), comparable datasets are missing for Magnetoencephalography (MEG). MEG offers advantages in its millisecond resolution, revealing physiological changes in brain oscillations or connectivity before structural changes are evident with MRI. We introduce a MEG dataset with 324 individuals: patients with MCI and healthy controls. Their brain activity was recorded while resting with eyes closed, using a 306-channel MEG scanner at one of two sites (Madrid or Cambridge), enabling tests of generalization across sites. A T1-weighted MRI is provided to assist source localisation. The MEG and MRI data are formatted according to international BIDS standards and analysed freely on the DPUK platform (https://portal.dementiasplatform.uk/Apply). Here, we describe this dataset in detail, report some example (benchmark) analyses, and consider its limitations and future directions.
format Online
Article
Text
id pubmed-7613066
institution National Center for Biotechnology Information
language English
publishDate 2022
record_format MEDLINE/PubMed
spelling pubmed-76130662022-07-17 A multi-site, multi-participant magnetoencephalography resting-state dataset to study dementia: The BioFIND dataset Vaghari, Delshad Bruna, Ricardo Hughes, Laura E. Nesbitt, David Tibon, Roni Rowe, James B. Maestu, Fernando Henson, Richard N. Neuroimage Article Early detection of Alzheimer’s Disease (AD) is vital to reduce the burden of dementia and for developing effective treatments. Neuroimaging can detect early brain changes, such as hippocampal atrophy in Mild Cognitive Impairment (MCI), a prodromal state of AD. However, selecting the most informative imaging features by machine-learning requires many cases. While large publically-available datasets of people with dementia or prodromal disease exist for Magnetic Resonance Imaging (MRI), comparable datasets are missing for Magnetoencephalography (MEG). MEG offers advantages in its millisecond resolution, revealing physiological changes in brain oscillations or connectivity before structural changes are evident with MRI. We introduce a MEG dataset with 324 individuals: patients with MCI and healthy controls. Their brain activity was recorded while resting with eyes closed, using a 306-channel MEG scanner at one of two sites (Madrid or Cambridge), enabling tests of generalization across sites. A T1-weighted MRI is provided to assist source localisation. The MEG and MRI data are formatted according to international BIDS standards and analysed freely on the DPUK platform (https://portal.dementiasplatform.uk/Apply). Here, we describe this dataset in detail, report some example (benchmark) analyses, and consider its limitations and future directions. 2022-05-31 2022-05-31 /pmc/articles/PMC7613066/ /pubmed/35660461 http://dx.doi.org/10.1016/j.neuroimage.2022.119344 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/) International license.
spellingShingle Article
Vaghari, Delshad
Bruna, Ricardo
Hughes, Laura E.
Nesbitt, David
Tibon, Roni
Rowe, James B.
Maestu, Fernando
Henson, Richard N.
A multi-site, multi-participant magnetoencephalography resting-state dataset to study dementia: The BioFIND dataset
title A multi-site, multi-participant magnetoencephalography resting-state dataset to study dementia: The BioFIND dataset
title_full A multi-site, multi-participant magnetoencephalography resting-state dataset to study dementia: The BioFIND dataset
title_fullStr A multi-site, multi-participant magnetoencephalography resting-state dataset to study dementia: The BioFIND dataset
title_full_unstemmed A multi-site, multi-participant magnetoencephalography resting-state dataset to study dementia: The BioFIND dataset
title_short A multi-site, multi-participant magnetoencephalography resting-state dataset to study dementia: The BioFIND dataset
title_sort multi-site, multi-participant magnetoencephalography resting-state dataset to study dementia: the biofind dataset
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7613066/
https://www.ncbi.nlm.nih.gov/pubmed/35660461
http://dx.doi.org/10.1016/j.neuroimage.2022.119344
work_keys_str_mv AT vagharidelshad amultisitemultiparticipantmagnetoencephalographyrestingstatedatasettostudydementiathebiofinddataset
AT brunaricardo amultisitemultiparticipantmagnetoencephalographyrestingstatedatasettostudydementiathebiofinddataset
AT hugheslaurae amultisitemultiparticipantmagnetoencephalographyrestingstatedatasettostudydementiathebiofinddataset
AT nesbittdavid amultisitemultiparticipantmagnetoencephalographyrestingstatedatasettostudydementiathebiofinddataset
AT tibonroni amultisitemultiparticipantmagnetoencephalographyrestingstatedatasettostudydementiathebiofinddataset
AT rowejamesb amultisitemultiparticipantmagnetoencephalographyrestingstatedatasettostudydementiathebiofinddataset
AT maestufernando amultisitemultiparticipantmagnetoencephalographyrestingstatedatasettostudydementiathebiofinddataset
AT hensonrichardn amultisitemultiparticipantmagnetoencephalographyrestingstatedatasettostudydementiathebiofinddataset
AT vagharidelshad multisitemultiparticipantmagnetoencephalographyrestingstatedatasettostudydementiathebiofinddataset
AT brunaricardo multisitemultiparticipantmagnetoencephalographyrestingstatedatasettostudydementiathebiofinddataset
AT hugheslaurae multisitemultiparticipantmagnetoencephalographyrestingstatedatasettostudydementiathebiofinddataset
AT nesbittdavid multisitemultiparticipantmagnetoencephalographyrestingstatedatasettostudydementiathebiofinddataset
AT tibonroni multisitemultiparticipantmagnetoencephalographyrestingstatedatasettostudydementiathebiofinddataset
AT rowejamesb multisitemultiparticipantmagnetoencephalographyrestingstatedatasettostudydementiathebiofinddataset
AT maestufernando multisitemultiparticipantmagnetoencephalographyrestingstatedatasettostudydementiathebiofinddataset
AT hensonrichardn multisitemultiparticipantmagnetoencephalographyrestingstatedatasettostudydementiathebiofinddataset