Cargando…
Rigid motion-resolved B(1)(+) prediction using deep learning for real-time parallel-transmission pulse design
PURPOSE: Tailored parallel-transmit (pTx) pulses produce uniform excitation profiles at 7 T, but are sensitive to head motion. A potential solution is real-time pulse redesign. A deep learning framework is proposed to estimate pTx B(1)(+) distributions following within-slice motion, which can then b...
Autores principales: | Plumley, Alix, Watkins, Luke, Treder, Matthias, Liebig, Patrick, Murphy, Kevin, Kopanoglu, Emre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7613077/ https://www.ncbi.nlm.nih.gov/pubmed/34958134 http://dx.doi.org/10.1002/mrm.29132 |
Ejemplares similares
-
Electromagnetic mass and rigid motion
por: Dillon, G
Publicado: (1999) -
Perception and Motion in Real and Virtual Environments: A Narrative Review of Autism Spectrum Disorders
por: Valori, Irene, et al.
Publicado: (2021) -
Relativistic rigid motion in one dimension
por: Eriksen, E, et al.
Publicado: (1982) -
Time-resolved RIXS experiment with pulse-by-pulse parallel readout data collection using X-ray free electron laser
por: Lu, H., et al.
Publicado: (2020) -
Rigid motion‐corrected magnetic resonance fingerprinting
por: Cruz, Gastão, et al.
Publicado: (2018)