Cargando…
Characterising group-level brain connectivity: A framework using Bayesian exponential random graph models
The brain can be modelled as a network with nodes and edges derived from a range of imaging modalities: the nodes correspond to spatially distinct regions and the edges to the interactions between them. Whole-brain connectivity studies typically seek to determine how network properties change with a...
Autores principales: | Lehmann, B.C.L., Henson, R.N., Geerligs, L., White, S.R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7613122/ https://www.ncbi.nlm.nih.gov/pubmed/33099009 http://dx.doi.org/10.1016/j.neuroimage.2020.117480 |
Ejemplares similares
-
Assessing dynamic functional connectivity in heterogeneous samples
por: Lehmann, B.C.L., et al.
Publicado: (2017) -
Exponential Random Graph Modeling for Complex Brain Networks
por: Simpson, Sean L., et al.
Publicado: (2011) -
A Framework for Reconstructing Archaeological Networks Using Exponential Random Graph Models
por: Amati, Viviana, et al.
Publicado: (2019) -
Gradient Profile Estimation Using Exponential Cubic Spline Smoothing in a Bayesian Framework
por: De Silva, Kushani, et al.
Publicado: (2021) -
Functional connectivity and structural covariance between regions of interest can be measured more accurately using multivariate distance correlation
por: Geerligs, Linda, et al.
Publicado: (2016)