Cargando…
Combining school-catchment area models with geostatistical models for analysing school survey data from low-resource settings: Inferential benefits and limitations
School-based sampling has been used to inform targeted responses for malaria and neglected tropical diseases. Standard geostatistical methods for mapping disease prevalence use the school location to model spatial correlation, which is questionable since exposure to the disease is more likely to occ...
Autores principales: | Macharia, Peter M., Ray, Nicolas, Gitonga, Caroline W., Snow, Robert W., Giorgi, Emanuele |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7613137/ https://www.ncbi.nlm.nih.gov/pubmed/35880005 http://dx.doi.org/10.1016/j.spasta.2022.100679 |
Ejemplares similares
-
Defining service catchment areas in low-resource settings
por: Macharia, Peter M, et al.
Publicado: (2021) -
Estimating the relative contribution of parasitic infections and nutrition for anaemia among school-aged children in Kenya: a subnational geostatistical analysis
por: Pullan, Rachel L, et al.
Publicado: (2013) -
Inferential Models
por: Martin, Ryan, et al.
Publicado: (2015) -
Geostatistical analysis of Malawi’s changing malaria transmission from 2010 to 2017
por: Chipeta, Michael Give, et al.
Publicado: (2019) -
Geostatistical modelling of the association between malaria and child growth in Africa
por: Amoah, Benjamin, et al.
Publicado: (2018)