Cargando…
Estimating soil moisture content under grassland with hyperspectral data using radiative transfer modelling and machine learning
The monitoring of soil moisture content (SMC) at very high spatial resolution (<10m) using unmanned aerial systems (UAS) is of high interest for precision agriculture and the validation of large scale SMC products. Data-driven approaches are the most common method to retrieve SMC with UAS-borne d...
Autores principales: | Döpper, Veronika, Rocha, Alby Duarte, Berger, Katja, Gränzig, Tobias, Verrelst, Jochem, Kleinschmit, Birgit, Förster, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7613374/ https://www.ncbi.nlm.nih.gov/pubmed/36093264 http://dx.doi.org/10.1016/j.jag.2022.102817 |
Ejemplares similares
-
Retrieval of carbon content and biomass from hyperspectral imagery over cultivated areas
por: Wocher, Matthias, et al.
Publicado: (2022) -
Eco-Friendly Estimation of Heavy Metal Contents in Grapevine Foliage Using In-Field Hyperspectral Data and Multivariate Analysis
por: Mirzaei, Mohsen, et al.
Publicado: (2019) -
Combining UAV-based hyperspectral imagery and machine learning algorithms for soil moisture content monitoring
por: Ge, Xiangyu, et al.
Publicado: (2019) -
Soil Moisture, Organic Carbon, and Nitrogen Content Prediction with Hyperspectral Data Using Regression Models
por: Datta, Dristi, et al.
Publicado: (2022) -
Rapid determination of pit mud moisture content using hyperspectral imaging
por: Zhu, Min, et al.
Publicado: (2019)