Cargando…
Prototyping Crop Traits Retrieval Models for CHIME: Dimensionality Reduction Strategies Applied to PRISMA Data
In preparation for new-generation imaging spectrometer missions and the accompanying unprecedented inflow of hyperspectral data, optimized models are needed to generate vegetation traits routinely. Hybrid models, combining radiative transfer models with machine learning algorithms, are preferred, ho...
Autores principales: | Pascual-Venteo, Ana B., Portalés, Enrique, Berger, Katja, Tagliabue, Giulia, Garcia, Jose L., Pérez-Suay, Adrián, Rivera-Caicedo, Juan Pablo, Verrelst, Jochem |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7613375/ https://www.ncbi.nlm.nih.gov/pubmed/36017157 http://dx.doi.org/10.3390/rs14102448 |
Ejemplares similares
-
Evaluation of Hybrid Models to Estimate Chlorophyll and Nitrogen Content of Maize Crops in the Framework of the Future CHIME Mission
por: Candiani, Gabriele, et al.
Publicado: (2022) -
Top-of-Atmosphere Retrieval of Multiple Crop Traits Using Variational Heteroscedastic Gaussian Processes within a Hybrid Workflow
por: Estévez, José, et al.
Publicado: (2021) -
Gaussian processes retrieval of crop traits in Google Earth Engine based on Sentinel-2 top-of-atmosphere data
por: Estévez, José, et al.
Publicado: (2022) -
Mapping landscape canopy nitrogen content from space using PRISMA data
por: Verrelst, Jochem, et al.
Publicado: (2021) -
Assessing Non-Photosynthetic Cropland Biomass from Spaceborne Hyperspectral Imagery
por: Berger, Katja, et al.
Publicado: (2021)