Cargando…
Vegetation Types Mapping Using Multi-Temporal Landsat Images in the Google Earth Engine Platform
Vegetation Types (VTs) are important managerial units, and their identification serves as essential tools for the conservation of land covers. Despite a long history of Earth observation applications to assess and monitor land covers, the quantitative detection of sparse VTs remains problematic, esp...
Autores principales: | Aghababaei, Masoumeh, Ebrahimi, Ataollah, Naghipour, Ali Asghar, Asadi, Esmaeil, Verrelst, Jochem |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7613381/ https://www.ncbi.nlm.nih.gov/pubmed/36082003 http://dx.doi.org/10.3390/rs13224683 |
Ejemplares similares
-
Classification of Plant Ecological Units in Heterogeneous Semi-Steppe Rangelands: Performance Assessment of Four Classification Algorithms
por: Aghababaei, Masoumeh, et al.
Publicado: (2021) -
Introducing ARTMO’s Machine-Learning Classification Algorithms Toolbox: Application to Plant-Type Detection in a Semi-Steppe Iranian Landscape
por: Aghababaei, Masoumeh, et al.
Publicado: (2022) -
Green LAI Mapping and Cloud Gap-Filling Using Gaussian Process Regression in Google Earth Engine
por: Pipia, Luca, et al.
Publicado: (2021) -
Quantifying Fundamental Vegetation Traits over Europe Using the Sentinel-3 OLCI Catalogue in Google Earth Engine
por: Reyes-Muñoz, Pablo, et al.
Publicado: (2022) -
Mapping the yearly extent of surface coal mining in Central Appalachia using Landsat and Google Earth Engine
por: Pericak, Andrew A., et al.
Publicado: (2018)