Cargando…
Green LAI Mapping and Cloud Gap-Filling Using Gaussian Process Regression in Google Earth Engine
For the last decade, Gaussian process regression (GPR) proved to be a competitive machine learning regression algorithm for Earth observation applications, with attractive unique properties such as band relevance ranking and uncertainty estimates. More recently, GPR also proved to be a proficient ti...
Autores principales: | Pipia, Luca, Amin, Eatidal, Belda, Santiago, Salinero-Delgado, Matías, Verrelst, Jochem |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7613383/ https://www.ncbi.nlm.nih.gov/pubmed/36082106 http://dx.doi.org/10.3390/rs13030403 |
Ejemplares similares
-
Monitoring Cropland Phenology on Google Earth Engine Using Gaussian Process Regression
por: Salinero-Delgado, Matías, et al.
Publicado: (2021) -
Optimizing Gaussian Process Regression for Image Time Series Gap-Filling and Crop Monitoring
por: Belda, Santiago, et al.
Publicado: (2020) -
Multi-Season Phenology Mapping of Nile Delta Croplands Using Time Series of Sentinel-2 and Landsat 8 Green LAI
por: Amin, Eatidal, et al.
Publicado: (2022) -
Gaussian processes retrieval of crop traits in Google Earth Engine based on Sentinel-2 top-of-atmosphere data
por: Estévez, José, et al.
Publicado: (2022) -
Quantifying Fundamental Vegetation Traits over Europe Using the Sentinel-3 OLCI Catalogue in Google Earth Engine
por: Reyes-Muñoz, Pablo, et al.
Publicado: (2022)