Cargando…
Gaussian processes retrieval of crop traits in Google Earth Engine based on Sentinel-2 top-of-atmosphere data
The unprecedented availability of optical satellite data in cloud-based computing platforms, such as Google Earth Engine (GEE), opens new possibilities to develop crop trait retrieval models from the local to the planetary scale. Hybrid retrieval models are of interest to run in these platforms as t...
Autores principales: | Estévez, José, Salinero-Delgado, Matías, Berger, Katja, Pipia, Luca, Rivera-Caicedo, Juan Pablo, Wocher, Matthias, Reyes-Muñoz, Pablo, Tagliabue, Giulia, Boschetti, Mirco, Verrelst, Jochem |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7613387/ https://www.ncbi.nlm.nih.gov/pubmed/36081832 http://dx.doi.org/10.1016/j.rse.2022.112958 |
Ejemplares similares
-
Monitoring Cropland Phenology on Google Earth Engine Using Gaussian Process Regression
por: Salinero-Delgado, Matías, et al.
Publicado: (2021) -
Quantifying Fundamental Vegetation Traits over Europe Using the Sentinel-3 OLCI Catalogue in Google Earth Engine
por: Reyes-Muñoz, Pablo, et al.
Publicado: (2022) -
Top-of-Atmosphere Retrieval of Multiple Crop Traits Using Variational Heteroscedastic Gaussian Processes within a Hybrid Workflow
por: Estévez, José, et al.
Publicado: (2021) -
Green LAI Mapping and Cloud Gap-Filling Using Gaussian Process Regression in Google Earth Engine
por: Pipia, Luca, et al.
Publicado: (2021) -
Retrieving and Validating Leaf and Canopy Chlorophyll Content at Moderate Resolution: A Multiscale Analysis with the Sentinel-3 OLCI Sensor
por: De Grave, Charlotte, et al.
Publicado: (2021)