Cargando…
A Survey of Active Learning for Quantifying Vegetation Traits from Terrestrial Earth Observation Data
The current exponential increase of spatiotemporally explicit data streams from satellitebased Earth observation missions offers promising opportunities for global vegetation monitoring. Intelligent sampling through active learning (AL) heuristics provides a pathway for fast inference of essential v...
Autores principales: | Berger, Katja, Caicedo, Juan Pablo Rivera, Martino, Luca, Wocher, Matthias, Hank, Tobias, Verrelst, Jochem |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7613397/ https://www.ncbi.nlm.nih.gov/pubmed/36081683 http://dx.doi.org/10.3390/rs13020287 |
Ejemplares similares
-
Quantifying Fundamental Vegetation Traits over Europe Using the Sentinel-3 OLCI Catalogue in Google Earth Engine
por: Reyes-Muñoz, Pablo, et al.
Publicado: (2022) -
Gaussian processes retrieval of crop traits in Google Earth Engine based on Sentinel-2 top-of-atmosphere data
por: Estévez, José, et al.
Publicado: (2022) -
Retrieval of carbon content and biomass from hyperspectral imagery over cultivated areas
por: Wocher, Matthias, et al.
Publicado: (2022) -
Top-of-Atmosphere Retrieval of Multiple Crop Traits Using Variational Heteroscedastic Gaussian Processes within a Hybrid Workflow
por: Estévez, José, et al.
Publicado: (2021) -
Retrieval of aboveground crop nitrogen content with a hybrid machine learning method
por: Berger, Katja, et al.
Publicado: (2020)