Cargando…
Retrieval of aboveground crop nitrogen content with a hybrid machine learning method
Hyperspectral acquisitions have proven to be the most informative Earth observation data source for the estimation of nitrogen (N) content, which is the main limiting nutrient for plant growth and thus agricultural production. In the past, empirical algorithms have been widely employed to retrieve i...
Autores principales: | Berger, Katja, Verrelst, Jochem, Féret, Jean-Baptiste, Hank, Tobias, Wocher, Matthias, Mauser, Wolfram, Camps-Valls, Gustau |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7613569/ https://www.ncbi.nlm.nih.gov/pubmed/36090128 http://dx.doi.org/10.1016/j.jag.2020.102174 |
Ejemplares similares
-
Retrieval of carbon content and biomass from hyperspectral imagery over cultivated areas
por: Wocher, Matthias, et al.
Publicado: (2022) -
Top-of-Atmosphere Retrieval of Multiple Crop Traits Using Variational Heteroscedastic Gaussian Processes within a Hybrid Workflow
por: Estévez, José, et al.
Publicado: (2021) -
A Survey of Active Learning for Quantifying Vegetation Traits from Terrestrial Earth Observation Data
por: Berger, Katja, et al.
Publicado: (2021) -
Gaussian processes retrieval of crop traits in Google Earth Engine based on Sentinel-2 top-of-atmosphere data
por: Estévez, José, et al.
Publicado: (2022) -
Crop Nitrogen Retrieval Methods for Simulated Sentinel-2 Data Using In-Field Spectrometer Data
por: Perich, Gregor, et al.
Publicado: (2021)