Cargando…
Pairwise joint modeling of clustered and high-dimensional outcomes with covariate missingness in pediatric pneumonia care
Multiple outcomes reflecting different aspects of routine care are a common phenomenon in health care research. A common approach of handling such outcomes is multiple univariate analyses, an approach which does not allow for answering research questions pertaining to joint inference. In this study,...
Autores principales: | Gachau, Susan, Njagi, Edmund Njeru, Molenberghs, Geert, Owuor, Nelson, Sarguta, Rachel, English, Mike, Ayieko, Philip |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7613603/ https://www.ncbi.nlm.nih.gov/pubmed/35199938 http://dx.doi.org/10.1002/pst.2197 |
Ejemplares similares
-
Analysis of Hierarchical Routine Data With Covariate Missingness: Effects of Audit & Feedback on Clinicians' Prescribed Pediatric Pneumonia Care in Kenyan Hospitals
por: Gachau, Susan, et al.
Publicado: (2019) -
Missing continuous outcomes under covariate dependent missingness in cluster randomised trials
por: Hossain, Anower, et al.
Publicado: (2016) -
Missing binary outcomes under covariate‐dependent missingness in cluster randomised trials
por: Hossain, Anower, et al.
Publicado: (2017) -
Comparison of methods for handling covariate missingness in propensity score estimation with a binary exposure
por: Coffman, Donna L., et al.
Publicado: (2020) -
High‐dimensional principal component analysis with heterogeneous missingness
por: Zhu, Ziwei, et al.
Publicado: (2022)